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ABSTRACT

Automatic Target Recognition (ATR) is a computationally intensive problem with
potential for good performance when mapped to Field Programmable Gate Arrays (FPGAs). This
thesis presents work that was done to implement the Sandia National Laboratory Chunky SLD
stage of ATR on an Altera FLEX 10K50. The FLEX 10K series has large (256� 8), dedicated,
embedded memories that present an opportunity for unique and innovative implementations of
computing algorithms. These memories were used for several purposes; the most interesting
use was to store microinstructions that direct the operation of the ATR processor. With this
method of implementing Chunky SLD, good performance was achieved relative to other FPGA
and microprocessor implementations.
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Chapter 1

INTRODUCTION

With the continual advances in VLSI technology, applications that were

once too difficult for computing hardware to handle are becoming more and more

feasible. One such application is Automatic Target Recognition (ATR). ATR is a data

intensive algorithm that is of great interest to the military. Although ATR can be

implemented on general purpose microprocessors, the performance of these processors

is not good enough to make their use feasible in a real system. This has lead researchers

to investigate the use of reconfigurable logic for use in this area. Field Programmable

Gate Arrays (FPGAs), which are the principle reconfigurable logic devices, show great

promise for being able to handle the high data flow and computation necessary to

implement ATR in a real, usable system.

1.1 Automatic Target Recognition

Automatic target recognition (ATR) is an application from the field of pattern

recognition. Very simply, ATR involves searching through images with a computer in

search of an object, or target, of interest. Pattern recognition is essentially the same thing

with the difference being that ATR usually refers to a military application of pattern

recognition. The images may come from RADAR or satellite photographs or elsewhere.

The objects are things the military is interested in identifying.

The ‘‘Automatic’’ in ATR refers to the fact that a computer is doing the

target location instead of a person. The reason a computer is used is not to increase

accuracy. Humans are actually very good at pattern recognition, that is, we are relatively

accurate in locating objects in images. A computer is used to speed up the process.

In many situations where target location is required, there are too many images and

too many objects of interest for a human to handle. For example, the ATR algorithm

presented shortly requires that an image be searched for a minimum of 100 targets per

second. This high data rate is required because of the large number of targets of interest

and the large number of images that have to be searched.
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CHAPTER 1. INTRODUCTION

ATR does not replace a human operator completely. It just attempts to find

the most likely matches in images and point them out to the operator so he can make a

final decision. In this way it acts as a ‘‘weeding out’’ process or data filter.

There are various ways to perform automatic target recognition. The

algorithm used here is one that was developed at Sandia National Laboratory. It

is discussed in detail in Chapter 2. Throughout this report, the distinction between

the‘‘algorithm’’ and the ‘‘implementation’’ should be kept in mind. The algorithm

was developed at Sandia National Laboratory. It is the mathematical description of

the operations performed. The implementation that will be described was developed at

BYU as part of this project. It is the method used to realize the algorithm in hardware.

1.2 Field Programmable Gate Arrays

As the name implies, an FPGA is a type of programmable logic device.

Another term to describe FPGAs is reconfigurable hardware. In essence, an FPGA is

a piece of hardware whose internal functional structure can be modified by its user.

Contrast this with a microprocessor whose function is fixed. Although a microprocessor

can be made to perform different tasks through software programming, its internal

structure never changes. It always has the the same functional blocks and the same

wiring between those blocks.

An FPGA does not generally change in its physical structure, but its

functionality can be modified in such a way that it appears to the user as if the

physical structure has changed. This is accomplished in various ways. The SRAM

FPGA incorporates one of the most popular methods. An SRAM FPGA is made up of

thousands of static memory cells that control the functionality of the device. The FPGA

can be reconfigured to perform different tasks by changing the contents of the memory

cells. Because reconfiguration only involves loading new data into memory cells, it can

be done quickly and an unlimited number of times.

By far the largest use of FPGAs today is to implement various logic functions

that tie together other components in a system. This is called gate replacement, ‘‘jelly

bean logic’’ or ‘‘glue logic.’’ FPGAs are well suited to this and are used widely in

industry for this purpose. In recent years, however, researchers have been studying the

feasibility of more ambitious uses for FPGAs. In particular, they have been looking at

2



CHAPTER 1. INTRODUCTION

ways to use an FPGA in a system either in place of or in addition to a microprocessor.

The hope is that the reconfigurable logic will increase the performance of the system.

This area of research is called configurable computing. ATR is an example of an

application that fits into this category. It is more than just gate replacement, it is actual

computation. It is something that a microprocessor might be used for, but current

microprocessors do not perform well enough to use in a real system. Because of the

characteristics of the algorithm, however, it is well suited to configurable hardware.

1.3 Project Objectives

There are many possible ways to implement ATR on FPGAs. Several

implementations have been and are being studied at Brigham Young University [1, 2].

What makes the implementation presented here unique is shown in the objectives of the

project, which were to

� exploit the sparseness of the bright templates,

� utilize the on-chip RAM of the Altera FLEX 10K FPGA, and

� demonstrate the use of embedded RAM for control.

The terms in used in these objectives will be explained more in later chapters.

1.4 Overview

The presentation is as follows. Chapters 2 and 3 give the necessary back-

ground on ATR and the Altera FPGA. Chapter 4 explains this project’s implementation

for a single ATR processor and Chapter 5 shows how the implementation is extended

to multiple processors running in parallel. The performance of the implementation

presented here depends on the characteristics of the templates (templates are explained

in Chapter 2) so Chapter 6 explains how template data was synthesized to predict

performance. Chapter 7 gives the results of the hardware synthesis, Chapter 8 discusses

the issues involved in scaling the design to larger devices, and Chapter 9 summarizes

and draws conclusions.
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Chapter 2

AUTOMATIC TARGET RECOGNITION

The ATR algorithm used in this project was developed at Sandia National

Laboratory. It is described in this chapter. The next chapter discusses the implementation

that was developed at BYU. The algorithm is made up of the three major stages shown

in Figure 2.1. These stages are Focus of Attention (FOA), Second-Level Detection

Focus of
Attention

(FOA)

Second-Level
Detection

(SLD)

Final
Identification

(FI)

Figure 2.1: Stages of ATR

(SLD), and Final Identification (FI). Each of the stages narrows the search down to a

smaller region so that succeeding stages which perform more computations process less

data. In this way the stage requiring the most computation, final identification, has to

process only a fraction of the original data.

This project deals only with the SLD stage of the algorithm. Work on other

stages is currently being done at the Configurable Computing Laboratory at Brigham

Young University. Work on SLD has been done elsewhere with good success (see [3]).

A variation on SLD, calledchunky SLD, is actually what was implemented for this

project. It is similar in some ways to normal template matching by cross correlation [4].

This chapter discusses the data for chunky SLD and the calculations that are performed

on that data.

2.1 Chunky SLD Templates and Images

As with normal template matching, images are compared to templates to find

possible matches. The templates are themselves small images that represent the objects

or patterns that are being searched for in an image. The template is placed at different

4



CHAPTER 2. AUTOMATIC TARGET RECOGNITION

positions in the image, and at each of these positions, the region of the image over which

the template lies is checked for a match.

2.1.1 Image and Template Size

For this version of ATR, the images come from synthetic aperture radar,

or SAR. Their size changes from stage to stage. In the FOA stage, they are large

(1024 � 896), but for the chunky SLD stage they are 128� 128 pixels with each pixel

having eight bits of depth. For chunky SLD the image is sometimes called animage

chipor just achip.

The templates represent different parts or ‘‘chunks’’ of the targets. This is

where the term chunky comes from in chunky SLD. The algorithm is intended to find

partially obscured objects by searching for parts of the object in the image chip. The

templates are themselves binary images, meaning each ‘‘pixel’’ is really just one bit that

is either on or off. The size of these templates is 16� 16. Figure 2.2 shows the relative

size of the image chips and templates for chunky SLD.

16

16

128

128

Template

Image

Search Region

Figure 2.2: ATR Data

There is a pre-defined region within the image chip over which the template

matching is done. This region is an area 65� 65 in the image. It is referred to as the

5



CHAPTER 2. AUTOMATIC TARGET RECOGNITION

search region.

2.1.2 Template Hierarchy

Many templates are required to represent one target in chunky SLD. There

are three major reasons for this. First, recall that chunky SLD attempts to identify

partially obscured objects. To do this, the target is divided into pieces, or chunks, and

each chunk is represented in a template. That way, if part of the target is behind cover,

some subset of the templates may still match the exposed part of the target.

The second reason that many templates are required is that the target may

be facing any direction. A target facing east requires completely different templates to

identify it than a target facing north or anywhere in between.

The third complication is that each chunk discussed above actually requires

two templates. One template, thebright template, contains pixels where strong RADAR

return is expected. The other, thesurround template, contains pixels where strong

RADAR absorption is expected. The templates are grouped together in large hierarchies

where each hierarchy contains all the templates necessary to completely detect one

target. Each hierarchy is called a ‘‘Q’’. Each Q has the templates for all the rotations of

a target, all the chunks at each rotation, and both the surround and the bright templates

for each chunk.

Figure 2.3 shows this hierarchy, along with the number of templates for each

level. At the lowest level of the Q are the bright and surround templates. One pair

of a bright and a surround template is called a chunk. Forty chunks together form a

class.A class represents a target at one orientation. Each object is represented with 72

orientations so 72 orientations of a class make up a Q. This gives72 � 40 � 2 or 5760

templates in a Q, or 2880 chunks.

2.1.3 Data Characteristics

In bright templates typically only a small percentage of the pixels are on.

This important feature is exploited in this implementation of chunky SLD. In contrast,

in surround templates a large majority of the bits are on. Figure 2.4 shows an example

of a typical bright and surround template pair.
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Q

Orientation
1

Orientation
72. . .

Chunk 1 Chunk 40. . .

Bright
Template

Surround
Template

72
x  40
2880

Orientations
Chunks / Orientation
Total Chunks

Figure 2.3: Template Hierarchy

Bright Template Surround Template

Figure 2.4: Example of Typical Templates
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The template data comes from a database which is static, and thus is known

at compilation time. This gives some flexibility as to how the template data is stored

and accessed. The images, however, are available only at run time. Nothing about them

except for their size is known before-hand.

2.2 ATR Algorithm

There are several operations performed in chunky SLD. They consist of the

� Computation of the shapesum,

� Thresholding of the image,

� Computation of the brightsum and surroundsum, and

� Computation of the final hitcount.

Figure 2.5 shows how these operations are linked together. These operations are

Shapesum Threshold

Brightsum

Surroundsum

Image
(128 x 128 x 8)

Bright Template
(16 x 16 x 1)

Surround Template
(16 x 16 x 1)

Hit
Determination

Figure 2.5: Chunky SLD Stage

performed with each chunk at all pixel positions in the image that are within thesearch

region (Figure 2.2). That is, the bright and surround templates under consideration are

placed at a position within the search region of the image, the operations are performed,

then the templates are moved to the next position in the search region. The following

sections explain the details of the operations for a single offset in the image.

2.2.1 Shapesum Calculation

The shapesum operation is a correlation between the bright template and the

image. Each bit in the bright template is multiplied by the image pixel that lies under it,

8
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and the results are summed. That is,

ssum(x; y) =
15X

a;b=0

btemp(a; b)� im(x+ a; y + b); (2.1)

wheressum(x; y) is the shapesum for a particular offset(x; y) in the image,btemp(a; b)

refers to the bit in the template at the offset(a; b), andim(x+ a; y + b) is the pixel in

the image chip at location(x+ a; y + b).

2.2.2 Threshold Calculation

The threshold is calculated from the shapesum. It is used in the brightsum and

surroundsum calculations. To calculate the threshold, the shapesum from the previous

step is divided by the number of on-bits in the template, and then a constant is subtracted

from the result of the division. Figure 2.6 shows a block diagram of this operation. The

Shapesum

N

C

Threshold

N = number of on-bits in template
C = template constant

Figure 2.6: Threshold Calculation

constant in this calculation is actually part of the template data and associated with each

bright-surround template pair.

2.2.3 Brightsum Calculation

The brightsum operation uses the bright template data, the image data, and

the threshold that was calculated previously. The brightsum operation consists of the

following steps:

9
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1. Each bright template bit is multiplied by the image pixel under it (since the

template is binary, the multiplication reduces to an ‘‘AND’’ operation).

2. The result is compared to the threshold that was calculated for this image offset.

3. A counter is incremented if the multiplication result is greater than the threshold.

In equation form:

bsum(x; y) =
15X

a;b=0

btemp(a; b)� [im(x+ a; y + b) � thr(x; y)]: (2.2)

The variables have the following meanings:

� bsum(x; y) is the brightsum value at offset(x; y) in the image.

� btemp(a; b) is the bit at offset(a; b) in the bright template.

� im(x+ a; y + b) is the image pixel at offset(x+ a; y + b).

� thr(x; y) is the threshold value for the image offset(x; y)

� [im(x+ a; y + b) � thr(x; y)] returns a1 if true and a0 if false.

The result of this operation is a count of the number of pixels that are under

on-bits in the template and that are greater than the calculated threshold.

2.2.4 Surroundsum Calculation

The surroundsum operation is very similar to the brightsum operation. Each

bit in the surround template is multiplied by the image pixel under it. The result is

compared to the threshold (the same threshold as for the brightsum), and a counter is

incremented if the multiplication result is less than the threshold. The differences are

that the surround template is used instead of the bright template, and the counter is

incremented when the computed value is less than the threshold. In equation form, the

surroundsum is given by

surrsum(x; y) =
15X

a;b=0

surrtemp(a; b)� [im(x+ a; y + b) � thr(x; y)]:

(2.3)
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2.2.5 Hit Calculation

A hit is obtained if the threshold, brightsum, and surroundsum meet cer-

tain criteria. The criteria are that(threshmin � thresh � threshmax), (brightsum �

brightsummin), and(surroundsum � surroundsummin)wherethreshmin, threshmax,

brightmin, andsurroundmin are constants that are part of the template data. The hits

from all the templates in a class are counted to calculate a hitcount which is used in the

next state of ATR.
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Chapter 3

ALTERA 10K FPGA

The Configurable Computing Lab at BYU is and has been investigating ATR

implemented on FPGAs from several different manufacturers. The device used for this

particular implementation is the Altera FLEX 10K. This FPGA comes in several sizes

with varying resources.

3.1 Embedded RAM

The most interesting feature of the Altera 10K family is its large (2 Kbit)

embedded RAMs called EABs (Embedded Array Blocks). These EABs are dedicated

RAM resources on the device. They are not logic cells configured as RAM. Other FPGA

makers, such as Xilinx, allow configuration of FPGA logic cells to act as embedded

RAM. The Xilinx devices do not have resources dedicated to RAM only. The advantage

of the dedicated RAM on the Altera parts is that they are fairly dense and have a high

storage capacity. The disadvantage is that if they are not needed as RAM, they cannot

be used as normal logic cells. As was mentioned in the introductory chapter, one of the

goals of this project was to exploit these embedded RAMs in some way to achieve high

performance.

3.1.1 Uses for Embedded RAM

Embedded RAM in FPGAs has many uses. This certainly is not the first

project to benefit from such RAM. Embedded RAM has been used to implement

� multipliers,

� complex logic,

� transcendental functions,

� data buffers, and

12
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� state machine decoding [5].

Generally, EAB usage falls into three categories:

� look-up tables,

� buffers, or

� control.

When used as a look-up table (LUT), embedded memory can replace large sections of

combinational logic in a design. For example, a 256� 1 memory can perform any logic

function of eight inputs. The eight inputs become the address lines to the memory, and

the memory output is the function value. Replacing combinational logic in this way can

both reduce the area of a circuit and increase its speed.

When used as a buffer or other similar small storage device, embedded

memory can replace slower, off-chip RAM. This again may speed up the circuit, and

it may also reduce the I/O pins that the circuit requires. Since I/O pins are a valuable

resource in FPGA designs, this is a real gain.

When used for control, it is typically used to implement state decoding or

something similar, which can also be classified under the LUT use. One of the unique

aspects this project is that it uses the embedded RAM for control in more creative ways.

3.2 10K Embedded RAM

Each EAB in the Altera 10K has a capacity of 2048 bits. The EAB is flexible

in its data and address widths and can be configured in the following sizes: 256� 8,

512� 4, 1024� 2, and 2048� 1. Multiple EABs can also be chained together to create

larger memories.

The EABs are flexible in other ways also. They can be configured as fully

synchronous, fully asynchronous, or somewhere in between. They can be configured as

RAM or ROM. In either case a file may be created that contains the initial data that is

to be stored in the EAB. This initialization file is required for the ROM configuration.

One of the limitations of the EABs is that they cannot be read and written in the same

cycle. It is often desirable to read a value from a buffer and replace it with a new value,

and this requires two cycles on the FLEX 10K.
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3.3 10K Logic and Routing Resources

The logic resources on the 10K are fairly basic. The logic cell is called a

logic element or LE. Each LE has a four-input LUT, for combinational logic, and a

flip-flop. The flip-flop has asynchronous set and reset, and synchronous enable. The

routing consists mainly of long wires that cross the die. This interconnect is called

FastTrack. There are also fast carry chains and cascade logic chains between logic

elements. The I/O pins are bidirectional with registers and tri-state capabilities.

3.4 10K Capacity

The FLEX 10K comes in several sizes. Table 3.1 lists the resources available

for the various available parts. The information in the table is taken from the Altera data

book [5].

Table 3.1: Altera FLEX 10K Resources
Resource 10K10 10K20 10K30 10K40 10K50 10K70 10K100

Logic Elements 576 1152 1728 2304 2880 3744 4992
RAM Bits 6144 12,288 12,288 16384 20,480 18,432 24,576

EABs 3 6 6 8 10 9 12
Registers 720 1344 1968 2576 3184 4096 5392
User I/O 150 198 248 278 310 358 406
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Chapter 4

SINGLE CHUNK PROCESSOR

This chapter and the next present the implementation of the chunky SLD

algorithm. The implementation was developed at BYU for this project. This chapter

describes the single chunk processor while chapter 5 extends the implementation to

multiple chunk processors. The method discussed here will be referred to as the

‘‘microcode’’ method.

4.1 Shapesum Implementation

As Chapter 2 explained, the shapesum is a cross-correlation between the

bright template and the image. The formula for cross-correlation is straight-forward,

and it might seem natural to make the implementation closely resemble the formula.

This would mean multiplying each pixel in the image by the corresponding bit in the

template and summing the results.

While this would certainly accomplish the task, it would not be the most

efficient method given the particular conditions in chunky SLD. The characteristics of

the templates make several optimizations possible. Specifically, because the templates

are binary and sparsely populated (few on-bits), the amount of unnecessary computation

can be greatly reduced. This is discussed in the following sections.

4.1.1 Optimizing the Multiplication

Using the fact that the templates are binary images, the multiplication can be

performed with a simple AND operation. The template bit is ANDed with the incoming

image pixel and the result is accumulated. Another way to do this is to use the bit from

the template as a control bit that determines whether the accumulator adds the incoming

pixel to the accumulated sum.
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4.1.2 Optimizing for Template Sparseness

This simplifies the multiplication, but it doesn’t take advantage of the

sparseness of the bright templates. Since there are relatively few on-bits in the bright

templates, the accumulator is idle a high percentage of the time while the off-bits are

being processed. This wastes the FPGA resources dedicated to the accumulator.

To keep the accumulator busy, a pixel needs to be accumulated every cycle.

This means that only pixels in the image that lie under on-bits in the template should

come into the FPGA. This requires two things: 1) the image must be available in an

off-chip RAM so that any pixel can beaccessed, and 2) an address must be generated

every clock cycle to a ‘‘valid pixel’’, that is, a pixel that lies under an on bit in the

template.

The first requirement is not unreasonable; random access of the image pixels

is possible if the image is stored in RAM. The second requirement means that the bright

template must be stored in some manner so that the address generation is possible. This

is where the Altera EAB comes in. It is used to store the template data in a format that

allows direct access to the on-bits.

If the shapesum operation were performed as a straight-forward cross

correlation, the template would be viewed as a small image and stored in a 2-D array,

or some similar representation. Finding the on-bits in an array, however, would require

a full search of all the bits in that array. Instead of storing the bits of the template in this

way, the template structure is stored as a series of offsets to the on-bits of the template.

A location in the template is arbitrarily chosen as the reference location. Each on-bit

has anx and ay offset from the reference location. Thex offset and they offset for

each on-bit are concatenated and stored in one location in the EAB. This is illustrated in

Figure 4.1 with the upper left-hand corner as the reference location. The EAB data must

be wide enough to store the offsets. Since the templates are 16� 16, thex andy offsets

each require four bits. The size of a full offset then is4 + 4 = 8 bits.

These offsets are then used to calculate addresses to pixels that are required

for the shapesum calculation. This is done by adding each offset, one at a time, to a base

offset in the image. This base offset is the location in the image for which the shapesum

operation is being performed. The base offset plus the template offset gives the address
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Figure 4.1: Example of Bright Template Storage

to the image pixel that needs to be accumulated for the shapesum. This is depicted in

Figure 4.2.

With the bright template information stored in this format, a pixel that needs

to be accumulated can be fetched every cycle. Each cycle a new offset is read from the

EAB, it is added to the base image offset, and the result is used to address the off-chip

RAM. The pixels that do not lie under on-bits are not needed in the calculation and so are

not accessed. The increase in performance from this method is due to the sparseness of

the bright templates. Since an average template has no more than ten percent of its bits

on, this method takes one tenth or fewer of the cycles of a straightforward correlation

that accesses all the pixels in the template region.

Figure 4.3 shows the basic layout of the shapesum calculation. An offset to

a template on-bit is read from the EAB, the offset is added to the current image offset (x

offsets are added together as are y offsets), and this sum forms the address to the image

pixel that needs to be accumulated. The pixel is read from the image RAM and added

to the running total. When all the template on-bits have been processed, the shapesum

is complete for that image position.

4.2 Threshold Implementation

The threshold calculation shown in Figure4.4 takes the result of the shapesum

calculation, divides it by the number of on-bits in the bright template, and subtracts a
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Figure 4.2: Pixel Address Calculation
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Figure 4.3: Shapesum Calculation for Single Template

18



CHAPTER 4. SINGLE CHUNK PROCESSOR

constant from it. The constant is loaded into the FPGA and stored in a register at the

Shapesum

N

C

Threshold

N = number of on-bits in template
C = template constant

Figure 4.4: Threshold Calculation

same time the EAB is loaded with the template data. The loading of the template data

and constants occurs during configuration. The resulting threshold is stored in a register

so that it can be used by the brightsum and surroundsum operations.

The divider is implemented as an iterative divider [6]. An iterative divider

in general takes as many cycles as the number of bits in the dividend. The dividend in

this case is the shapesum. The number of bits in the shapesum varies with the number

of on-bits in the bright template and the value of the pixels in the image. To be safe,

a width of 14 bits is assumed. This allows 64 on-bits in the template with each pixel

having a value of 255, the maximum it can be. Fourteen bits is conservative since most

templates will have far fewer than 64 on-bits, and the pixels will have lower values

than 255. An iterative divider was chosen to conserve space as it is very compact. The

number of cycles required to perform the division does have an impact on performance.

Performance is discussed in Chapter 7.

A different type of divider that requires fewer cycles could be beneficial. One

option that was explored was to multiply by the reciprocal of N, the number of on-bits,

instead of dividing by N. Since N is a constant, a very compact, fast multiplier can be

used [7]. Such a multiplier was designed and tested for this project. This multiplier

was approximately 1.6 times the size of the iterative multiplier but required only three

cycles instead of 14. That is 4.7 times faster when measured by number of clock cycles.

The difficulty that was encountered in multiplying by the reciprocal was achieving the
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required precision in the result. Due to rounding effects, the result can be off by�1.

Another drawback to using a constant multiplier is that it would require reconfiguration

of the FPGA between templates. This is because the constant is hard-coded into the

circuit so the multiplier becomes template-specific. Since the iterative divider is more

general, full reconfiguration is not necessary. All that is required to change templates

is to reload the EABs and a few registers. The reconfiguration time for the FPGA is

several orders of magnitude greater than the time required to reload the EABs. Section

7.1.5 and Table 7.1 on page 42 compare the performance of systems using each of the

two methods.

4.3 Brightsum Implementation

The brightsum calculation is similar to the shapesum calculation. The image

pixels that lie under the on-bits in the bright template are used in the brightsum just as

they are in the shapesum. To access these pixels, there are at least two possibilities:

1) Use the same kind of address generation that is used for the shapesum and read the

pixels from an off-chip RAM, or 2) Fetch the pixels once for the shapesum and reuse

them for the brightsum. The second option is the one that was implemented. This

method will be referred to as pixel caching.

4.3.1 Pixel Caching

Since the brightsum uses exactly the same pixels that the shapesum uses,

image memory can be conserved by fetching the pixels just once and using them for

both the shapesum and the brightsum. The only difficulty is that the brightsum operation

must wait for the threshold operation to complete before it can begin. To reuse the

pixels, they must be stored on the FPGA when they are fetched for the shapesum so

they can be used later when the brightsum begins. The Altera EABs are a good place to

store these pixels.

The brightsum operation uses the threshold result in its computation. This

dependency prevents it from running concurrently with the threshold operation at the

same image position. It does not, however, prevent the two operations from running

simultaneously at different offsets. It is advantageous, then, to run the threshold and
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the brightsum simultaneously with the threshold operating at one image position ahead

of the brightsum. When the threshold is finished being calculated, it can be stored in a

register so that it is available for the brightsum calculation. That is how the system was

implemented.

When the pixels are fetched for the shapesum operation, they are stored

temporarily in an EAB. After the threshold is complete for a given offset, the brightsum

operation at that offset begins and uses the cached pixels instead of going off chip to

fetch them. Going off chip would require an extra image RAM for the brightsum plus

I/O pins to access it. It would also require an address generation circuit similar to that

of the shapesum.

Caching the pixels temporarily on chip reduces the image memory and FPGA

pin requirements. It also eliminates the need for address generation in the brightsum

calculation. It isn’t free, however. It does require on-chip RAM to store the pixels. Not

only that, since the threshold operation is storing pixels at the same time the brightsum

is reading them, the on-chip RAM must be able to be written and read in the same cycle.

The FLEX 10K EABs are not capable of doing this. They can be written and read, but

the value read is the value that is being written. What is needed is to read the previous

value and write a new one in the same cycle. Otherwise two cycles are required which

doubles the cycle count of the shapesum and brightsum. The way around this is to use

two EABs. The shapesum stores pixels to one EAB while the brightsum reads pixels

from the other. After the operations finish, they swap roles so that the brightsum gets

the pixels that were just used for the shapesum. With the pixels cached, the rest of the

brightsum calculation is simple: compare each of the cached pixels against the threshold

that was calculated previously and keep a count of how many pixels are greater than the

threshold.

4.4 Surroundsum Implementation

The surround templates do not have the same sparseness that the bright

templates have; this makes the optimization that was used for the brightsum less

effective for the surroundsum. It becomes even more so in the parallel implementation

discussed in Chapter 5. In view of this, the surroundsum operation was not implemented

in the same way as the brightsum operation. Instead, the surround template was divided
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into four regions and all four regions are calculated in parallel. Although this approach

quadruples the amount of hardware required to compute the surroundsum, it leads to a

more balanced implementation where the time to compute the shapesum/brightsum is

nearly the same as the time required to compute the surroundsum. As these operations

operate in parallel, it is important that they proceed at the same rate.

The implementation uses an EAB to store the template data. One bit is stored

for each location in the template. As the pixels are read from the off-chip RAM, they

are compared to the threshold. If the pixel value is less than the threshold, and if the

template bit is a ‘‘1’’, a counter is incremented.

The hardware requirements for each quadrant processor for the surroundsum

are a counter, a comparator, an off-chip RAM for image storage, and FPGA pins to

access the RAM. This is shown in Figure 4.5.

<
surroundsum

Image
Ram

+threshold

pixel

Figure 4.5: Surroundsum Layout

4.5 Hit Determination Implementation

The implementation of the hit determination is straightforward. The results

from the threshold, brightsum, and surroundsum are compared to the appropriate

constants (see Section 2.2.5, p. 11) and a hit is scored if they pass the comparisons.
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4.6 Microcode Method

Storing offsets as described in this chapter will be referred to as the ‘‘mi-

crocode’’ method. This is because, in essence, the template offsets are microinstructions

that are loaded into the FPGA RAM and then used to control the operation of the

processor. This satisfies the goal of using the embedded RAM for circuit control. On the

other hand, the template offsets could be considered data that is loaded onto the FPGA

periodically and used in the address calculation. This shows that the distinction between

data and instructions is not always clear.
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MULTI-CHUNK PROCESSOR

Chunky SLD is inherently a parallel algorithm. Multiple chunks can be

processed simultaneously since there is no data dependency between chunks. The

degree of parallelism that can be achieved is limited only by the hardware available,

not by the data or by the chunky SLD operation itself. This chapter describes how

the chunky SLD implementation that was explained in the previous chapter can be

parallelized. The parallel version is the one actually implemented for this project.

5.1 Sharing Memory between Chunk Processors

Making the implementation parallel is not simply a matter of replicating the

single chunk processor multiple times across the FPGA. If this were done, very few

processors would fit on a device due to the memory requirements of each processor. In

the implementation outlined in the previous chapters, the memory required to process a

chunk consists of the following:

� 5 off-chip image memories,

� 1 EAB for bright template storage,

� 1 EAB for surround template storage, and

� 2 EABs for image pixel caching.

The five off-chip memories include four for the four quadrants of the surroundsum and

one for the shapesum. Recall that the brightsum does not need an off-chip image RAM

because of pixel caching. Two EABs are required for pixel caching because the EAB

does not have the necessary read and write capability.

The memory requirements listed above seriously limit the number of pro-

cessors that can fit on an FPGA. The largest Altera device at the time of this writing is

the 10K100 which has 12 EABs. This means a maximum of three processors with the
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above memory requirements can fit on the 10K100. Three processors would severely

under-utilize the logic resources on the 10K100. Thus it is necessary to share the

memory between chunk processors in some way so that a greater number of processors

fit on a device. The following sections describe how this is done.

5.1.1 Shapesum

The memory requirements for the shapesum include the EAB for bright

template storage and the off-chip RAM for image storage. To share the EAB among

processors, the bright templates need to be combined in some way so that they do not

require one EAB for each processor.

As discussed earlier, the bright template is stored in the form of offsets to the

on-bits. These are the offsets that are added to a base offset to calculate the address of a

pixel that needs to be accumulated. To reduce the on-chip RAM requirements for this

bright template storage, several templates may be combined so that they use one EAB

between them to store their offsets.

This is done by first selecting a group of templates that will be run in parallel.

From this group, a master template is created. The master template contains the on-bits

from each of the member templates, as shown in Figure 5.1. This is essentially an

OR-type operation between the templates. In other words, if the templates are viewed

as sets of bits, the master template is the union of the templates in the group. The master

template is then stored as a normal template would be stored in the EAB--the offsets

to the on-bits are stored. The master template information is used in the same way as

before, that is, each offset is added in turn to the base image offset to obtain the address

of the next pixel to be fetched. Now, however, only one EAB is required to store the

template for the whole group.

Template Masks

The obvious problem is, not every pixel fetched is valid for every template

in the group. Because the master template contains the union of the group of templates,

many of the pixels that are brought onto the FPGA are destined for only some subset of

the templates in the group. Some way is needed to distinguish which pixel goes to which
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Figure 5.1: Example of Combined Template Storage
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template processor. To accomplish this, another on-chip RAM is used to store a mask

for each of the master template offsets. This is the mask data shown in Figure 5.1. There

is a mask for each offset in the master template. Each mask has one bit per template.

The mask bit indicates whether the offset is valid for the template which it represents,

and it is used to control the accumulator for the shapesum calculation for that template.

Figure 5.2 shows an example of the shapesum processor for two combined

templates. One pixel is retrieved from the off-chip image RAM and is fed to the

shapesum calculators for both templates. At the same time the appropriate mask is read

from an EAB and each bit is sent to the shapesum processor to which it corresponds.

The mask bit controls the accumulator, determining whether or not to add the incoming

pixel to the current accumulated value.

Using this method of combining bright templates for the shapesum, only

two on-chip RAMs are needed to store the template information for the whole group

of bright templates. Also, only one off-chip RAM is needed for image storage for the

group of templates. Less off-chip RAM also means that fewer FPGA pins are required

to access it.

5.1.2 Brightsum

The memory requirements for the brightsum processor include two EABs

for pixel caching. No off-chip RAM is needed.

Combining Pixel Caching

The mask information that is used in the shapesum operation can also be

used to combine the image caches for all the templates in the group. Each pixel for

the master template is cached in an on-chip RAM as it is fetched for the threshold

calculation. Then, when the pixels are needed for the brightsum calculation, they are

read from the RAM and broadcast to the brightsum calculators for all the templates. If

the pixel is not valid for a particular template, the mask bit prevents the counter from

incrementing.
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Hardware Savings

When the cache EABs are combined like this, the whole group of combined

templates uses only two EABs total instead of two EABs for each bright template.

5.1.3 Surroundsum

The surroundsum operation is already set up to share memory resources

between template processors. It reads every pixel in the template region and uses mask

bits to determine whether to increment its counter. All that is needed to process more

templates is to add a mask bit for each template in the group for each template bit

location.

5.1.4 Impact of Sharing Memory

To illustrate the savings that sharing memory produces, Table 5.1 compares

the RAM requirements for a parallel implementation with and without memory sharing.

Table 5.1: RAM for 8 Chunk Processors
Shared Not Shared

Shapesum Image 1 8
Off-Chip RAM Surroundsum Image 4 4

Total 5 12
Bright Template Offsets 1 8
Bright Mask 1 0

On-Chip RAM Surround Mask 4 4
Pixel Cache 2 16
Total 8 40

It shows the RAM required for a group of eight templates using combined memory

resources versus the same group of eight using individual resources. This table can be

compared to Table 3.1 on page 14 which lists the number of EABs available on each

member of the 10K family. With the combined template method, one 10K40 has enough

on-chip RAM for eight chunk processors. Without combining templates, the same eight

chunk processors would require five 10K40s to satisfy the on-chip RAM requirement.
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Memory requirements do not tell the whole story. Sharing memory has the

potential to impact performance negatively, particularly in cycle count. The reason for

this is that combining bright templates may produce a master template with a large

number of on-bits. A large number of on-bits results in a high number of required

memory reads. Chapters 6 and 7 discuss this issue more completely.

5.2 Final Implementation

There really is no ‘‘final’’ implementation because the system is quite

flexible. Different numbers of processors may be grouped together and different sized

devices can be used. With that in mind, though, a set configuration was chosen so that

some performance results could be generated.

The configuration that was used consists of eight chunk processors. The

device chosen was a FLEX 10K50. Table 5.1 shows that a group of eight chunk

processors requires eight EABs. The 10K50 has 10 EABs available. It also has enough

logic and routing resources for eight processors.

Figure 5.3 shows a basic block diagram of the eight processor system. Only

two processors are shown with ‘‘...’’ representing the other six.
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Chapter 6

TEMPLATE SYNTHESIS AND ANALYSIS

The performance of the parallel implementation (Chapter 5) is dependent on

the bright template data because of the method used to combine templates. Due to the

obvious need to quantify performance for this system, it became necessary to analyze

template data to make a performance prediction. Real templates, however, were not

available to analyze. Sandia Laboratory provided 17 bright and 17 surround templates

that they said were representative of actual templates. These were studied, but synthetic

bright templates were also generated for further analysis. This chapter discusses the

results. Surround template data does not affect performance so no surround template

data was generated.

6.1 Template Synthesis

A template model and synthesis algorithm were used to generate the synthetic

templates. The model was chosen based on the characteristics of the bright templates.

The synthesis algorithm was chosen based on its ability to generate data based on the

model.

6.1.1 Template Characteristics

The most important template characteristics are the number of on-bits and

their spatial relationship. The sample templates from Sandia and other available

information implied that the bright templates are:

� sparse,

� clustered, and

� centered.

Sparse:This detail was given explicitly by Sandia. What it means is that

there are few on-pixels or ‘1’s compared to the total number of pixels in the template.
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The figure given by Sandia was that bright templates are less than ten percent populated.

The total number of bits in a template is 256. Ten percent of this is 26 bits.

Clustered: This means that the on-bits are generally in groups and not

scattered across the template. This is an assumption based on how the templates are

formed and what they represent. To form a bright template, a SAR (Synthetic Aperture

RADAR) image of a target is thresholded to make it binary. It is then divided into 40

pieces. Each piece becomes a template. This is done in an attempt to identify pieces

of the target so that partially obscured targets can be recognized. Since each bright

template identifies a piece of a target, it seems likely that the on-bits will be clustered in

groups.

Centered:This means that the cluster or clusters of on-bits are in the center

of the template, and very few pixels, if any, are on the edges of the templates. This

is probable because the result of the algorithm does not depend on the position of the

on-bits within the template. The center of the template is the most likely place for the

on-bits to be positioned.

The 17 templates provided by Sandia generally exhibited these characteris-

tics. Each template had eight on-bits that were clustered in the center of the template.

Figure 6.1 shows eight of the sample templates.

Figure 6.1: Sample Templates from Sandia
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6.1.2 Template Model and Synthesis Algorithm

A binary Markov Random Field (MRF) [8] was chosen as the model for the

bright templates. A MRF is a statistical model for two dimensional data. It was chosen

for its ability to model pixel clustering in images. The MRF did not have the ability

to model the other template characteristics, but the synthesis algorithm provided the

means to incorporate these. The synthesis algorithm was taken from [9]. The model

and algorithm have parameters� and�. The exact meaning of these parameters is not

important here. Appendix A may be consulted for further details. It is enough to say

these parameters control the strength of the clustering in the generated templates. The

number of on-bits can also be controlled by the algorithm.

6.2 Analysis of Synthesized Templates

Many templates were synthesized to analyze the effects of varying the� and

� MRF parameters. By varying these parameters, the degree of clustering was varied in

the generated templates. The number of on-bits per individual template was also varied.

These two factors, the clustering strength and the number of on-bits per template, are

what determine how well the templates combine. The intent of the synthesis was to see

how much clustering and what maximum number of on-bits per template are required

for good performance. After the templates were generated, groups of eight and sixteen

templates with the same parameters were combined and a master template generated

to see how many on-bits resulted in the combined group. For best performance, the

number of on-bits in the master template should be 50 or fewer (see Section 7.1.1). This

must be possible, according to the Sandia information, at up to 25 on-bits per template.

The results showed that the ideal case is unlikely. That is, it is unlikely that

the master template will have fewer than 50 on-bits when the member templates each

have 25 on-bits. In fact, none of the parameters that were synthesized resulted in fewer

than 50 master template on-bits with 25 on-bits per individual template. The closest

were groups similar to the one shown in Figure 6.2, and templates with this high degree

of clustering do not seem very likely. This group has parameters� = �4:0, �1;� = 2:0,

and�2;� = 3:0. Up to 22 on-bits per template were possible before the resulting master

template had more than 50 on-bits.
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Figure 6.2: Highly Clustered Synthesized Templates

On the other hand, the analysis did indicate that the number of on-bits in the

master template is likely to be within reasonable limits for good performance. To make

a realistic performance prediction, it was necessary to estimate the clustering parameters

of real templates by using the templates that were provided by Sandia. Figure 6.3

shows synthesized templates with 12 on-bits each that seem to resemble the degree of

clustering in the Sandia templates. Table 6.1 shows the parameters that correspond to

the synthesized templates in the figures. This table also shows two other figures of

interest called the ‘‘Ideal Case’’ and the ‘‘Worst Case’’. The ideal case is the maximum

number of on-bits in each member template that is allowed for the master template to

have fewer than 50 on-bits. In other words, this is the maximum number of on-bits

per template that is allowed for maximum performance. The worst case table entry

is the number of master template on-bits for groups with 25 on-bits per template. If

the bright templates are truly ten percent populated, the worst case number shows how

many on-bits the master template will have.

Table 6.1: Estimated Parameters of Sandia Sample Templates
Group �2;� � �1;� Ideal Case Worst Case

0 0.0 -5.6 2.8 9 90
1 1.0 -4.0 2.0 9 70
2 2.0 -2.4 1.2 20 55
3 3.0 -1.6 0.8 23 52
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Group 2
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Group 0
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Figure 6.3: Synthesized Templates that Resemble Sandia Sample Templates

The analysis shows how well typical templates might be expected to combine.

Assuming the templates in Figure 6.3 are indeed typical, the worst that is likely is that the

master template will have somewhere around 100 on-bits. The best that can be expected

is that it will have fewer than 50 on-bits with the individual templates being almost ten

percent populated. The next chapter elaborates what this means for performance.
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Chapter 7

RESULTS AND PERFORMANCE

The design for this project was done completely in VHDL. The VHDL was

synthesized to produce a circuit that can be down loaded to an Altera FLEX 10K50. The

necessary hardware was not available, so the design was never tested on a real device.

The performance results come from the software tools.

Two major CAD software tools were used. Synopsys was used to synthesize

the VHDL source code and output an EDIF file. The EDIF file was read by MAX+PLUS

II which is Altera’s software. MAX+PLUS II placed and routed the design and prepared

a bitstream ready to be down loaded. This chapter discusses the performance of the

system using the figures from these CAD tools. Several CAD tool issues are also

discussed.

7.1 Performance

The performance of this system is the product of several factors. The

principal contributing factors are:

� number of clock cycles to complete one iteration,

� clock frequency,

� template loading time, and

� FPGA area required for a chunk processor.

These factors figure into the performance in the following ways. The number of clock

cycles along with the clock frequency dictate the time of execution for one iteration. An

iteration is the calculation of one chunk at one image position. The template loading time

affects how fast the FPGA can be configured to process a new template. The required

circuit area actually affects performance per device, rather than raw performance. The
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size of the circuit limits how many chunk processors fit on one FPGA and therefore

how many chunks can be processed in parallel with one device.

To see what kind of performance can be achieved, performance factors are

discussed individually. The implementation used to measure the performance is the

one presented in Section 5.2. This is a system with eight chunk processors on a FLEX

10K50.

7.1.1 Clock Cycles

The number of clock cycles required to complete a chunk calculation is

dependent both on the implementation and on the device used for the implementation.

The number of cycles is given by

ncycles = max(nthresh; nbright; nsurround) (7.1)

wherenthresh, nbright, andnsurround are the number of cycles to calculate the threshold,

brightsum, and surroundsum, respectively. Because all three operations run simultane-

ously, the one that requires the most cycles determines the number of cycles for the

whole chunk calculation.

Immediately it is possible to establish a lower bound onncycles in the above

equation. Sincensurround is fixed, it represents the fewest number of cycles in which

one chunk can be processed. The reason thatnsurround is fixed is that the surroundsum

processor must read and process every pixel under the template. It does this four pixels

at a time so 64 cycles are required. After the four quadrants are processed, several cycles

are required to combine the results. To cover this and other overhead, 70 will be used

as the figure fornsurround. That means that the minimum thatncycles can be is 70.

The brightsum and threshold do not have a fixed number of cycles. They

depend on the number of on-bits in the bright template. The one thing that can be

said for certain is that the threshold always uses more cycles than the brightsum for a

given template. This is because the threshold includes the shapesum, and the shapesum

requires roughly the same number of cycles as the brightsum. After the shapesum

completes, the division is performed requiring an additional 14 cycles (see Section 4.2).

These observations make it possible to rewrite 7.1 as

ncycles = max(nthresh; 70) (7.2)
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This makes it clear that the number of cycles required for the threshold is really the key

to calculating the number of cycles for the whole algorithm. So, just how many cycles

are required for the threshold? As just mentioned, the divide requires 14 cycles after

the shapesum completes. That is the starting point in the calculation. Then, each on-bit

in the master template requires a memory access and each memory access requires one

cycle. This means that the number of on-bits in the master template plays an important

role in the performance. This is the reason the results of Chapter 6 are important. The

analysis there shows how many on-bits can be expected from templates with varying

degrees of clustering.

The ideal case occurs when the number of on-bits for the master template is

below about 50. If this is the case, then the cycles for memory reads plus the divide

cycles is fewer than the 70 cycles for the surroundsum. Equation 7.2 shows that this

results in the fewest cycles possible. If the number of on-bits in the master template is

greater than 50, every on-bit above 50 adds a clock cycle to the total number required.

For example, if the number of on-bits is 100, the number of cycles required is roughly

100 + 14 = 114.

7.1.2 Clock Frequency

Significant effort went into achieving the best clock frequency possible, both

in the circuit design and in the use of the software tools. In the circuit design, pipelining

was used wherever possible to reduce the length of combinational logic paths. Specific

VHDL coding techniques were employed that help the synthesis tools to obtain a short

clock period. Various CAD tool options were tried to find the best combination (see

Section 7.2). With this effort, a frequency of 25 MHz was achieved, as reported by the

place and route tool. This was a significant improvement over the 12 MHz obtained on

the first synthesis attempt.

7.1.3 Template Loading Time

When a chunk processor must process a new template, it loads several pieces

of data. These include the microcode template offsets, the template masks, and the

various constants involved in the computations. A simple protocol for loading this data
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was designed and implemented. This process will be referred to as reconfiguration

despite the fact that the FPGA is not actually reconfigured in the traditional sense. This

reconfiguration requires approximately 500 clock cycles. The clock frequency is the

same as the execution clock frequency, or 25 MHz. The time to load new template

data is calculated by multiplying the number of cycles by the clock period. This gives

500 � 40ns = 20�s.

The reconfiguration time would be substantially worse if the entire FPGA

had to be reconfigured. This would be necessary, for example, if the divider were

implemented as a constant multiplier (Section 4.2). The published configuration time

for the Altera 10K50 is70ms. There is some possibility that a faster configuration mode

may become available for the 10K parts which would be 40 times faster than the current

mode. That would make the reconfiguration time approximately1:8ms.

7.1.4 FPGA Area

The area required for the design is 2300 logic elements. Each logic element

(LE) contains one 4-input lookup table and one flip-flop. The 10K50 has 2880 LEs.

This gives a utilization of 80%. The remainder of the LEs were unusable because of

insufficient routing resources. In fact, hand placement was required to get the design to

route even at 80% utilization.

7.1.5 Overall Performance

To combine the individual performance factors into one overall figure, a

performance metric was needed. One metric that was used is the time required to

process an entire Q of 2880 chunks. This allows the inclusion of execution time as well

as reconfiguration time in the performance figure. The calculation was made for the

system described in Section 8.2 which processes 40 chunks in parallel using five Altera

10K50s. The necessary parameters to calculate the execution time are:

� ncycles = 70 = number of cycles to calculate one chunk at one offset. As already

noted, this may actually be more than 70, but 70 is good for a first estimation.

� noffsets = 652 = number of offsets per image. This is the size of the search region

given in Section 2.1.1.
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� norients = 72 = number of orientations for each class.

� tcycle = 40ns = clock period.

The reconfiguration time can be calculated with the following parameters:

� tonereconfig = 20�s = time for a single reconfiguration.

� nreconfig = 72 = number of reconfigurations that must be done for each Q. Since

40 chunks are processed in parallel, reconfiguration takes place one time per

orientation.

The total time,tQ, required to process one Q is the sum of the execution and

reconfiguration times, or

tQ = texec + treconfig; (7.3)

wheretexec is the execution time andtreconfig is the time to load new template data.texec

is given by

texec = ncycles � tcycle � noffsets � norients: (7.4)

treconfig is given by

treconfig = tonereconfig � nreconfig: (7.5)

Substituting values into 7.4, 7.5, and 7.3 gives

texec = 70 � 40ns � 652 � 72 (7.6)

= 851ms; (7.7)

treconfig = 20�s � 72 (7.8)

= 1:4ms; (7.9)

tQ = 851ms + 1:4ms (7.10)

= 852ms: (7.11)

To summarize the above equations, the system in Section 8.2 consisting of five Altera

FLEX 10K50 FPGAs and nine image RAMs can process one Q in852ms. This figure
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includes reconfiguration time. The calculations do not include time to tally the hitcounts

from the individual FPGAs. That circuitry has not been implemented. If the templates

do not combine well so that more than 70 cycles/offset are required, it will take longer

to process a Q. For example, If 120 cycles are required, the time for one Q can be

calculated by

tQ =
120

70
� 852ms (7.12)

= 1:46s: (7.13)

The reconfiguration time is only 0.2 percent of execution time which is

insignificant. This is because the FPGA does not actually have to be reconfigured

with a new bitstream. If the FPGA did have to be completely reconfigured, the

total reconfiguration time for a Q would go from1:4ms to 4:9s, using the published

configuration time for the 10K50. If the fast mode reconfiguration is used, the total

reconfiguration time becomes123ms. A system using a constant multiplier instead of

the iterative divider would have to reconfigure completely but would use fewer cycles

for the division. Table 7.1 compares the performance of systems using the iterative

divider and the constant multiplier. Because of the increased reconfiguration time for

the constant multiplier, essentially no performance is gained from using it even though

it is faster.

Table 7.1: Comparison of Systems Using Iterative Divider and Constant Multiplier
Division Execution Reconfiguration

Type
Cycles/Offset

Time Time
Time/Q

Iterative 120 1:46s 1:4ms 1:46s

Constant 109 1:33s 0:123s 1:45s

Constant 109 1:33s 4:9s 6:2s

Another closely related method of expressing performance is to calculate

how many Q per second can be processed. For the example with 70 cycles/offset, the

performance measured this way is1=852ms = 1:2 Q=s. Of course, this is with five

FPGAs. To make performance comparisons with other systems, it is helpful to measure
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this performance per FPGA. In that case, the Q per second figure should be divided by

five (the number of FPGAs in the proposed system). Continuing the example,

1:2 Q=s

5 FPGA
= 0:235 Q=s=FPGA; (7.14)

that is, 0.235 Q per second per FPGA, assuming 70 cycles per offset. Table 7.2

summarizes the above performance figures for 70 and 120 cycles per offset.

Table 7.2: Performance of the Altera Implementation
Cycles/Offset Time/Q for System Q/s for 1 FPGA

70 0.852 s 0.235
120 1.46 s 0.137

7.1.6 Performance Comparison

To better understand what these performance figures mean, it is helpful to

compare them to the performance of other implementations. Several implementations

other than this one have been studied at Brigham Young University. A comparison will

be made with two other systems: a Xilinx 6200 implementation and a SPLASH-2 [10]

implementation [11]. The performance of a workstation is also presented as a baseline.

Performance for the comparison is measured in the number of Q that can be processed

per second (Q/s). Since the three systems all use multiple FPGAs, the figure for each

system will be normalized by the number of FPGAs in that system. The resulting

figure is then on a per-device basis. The following sections describe briefly how the

performance for each system is calculated. Following that, Table 7.3 summarizes the

performance comparison.

Altera

For the Altera implementation, the appropriate performance figures are

shown in Table 7.2 in the last column.
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Xilinx 6200

The Xilinx 6200 system is currently under development so the performance

figures are projected. The implementation uses a bit-serial approach on two Xilinx 6216

parts. The projected clock speed is 50 MHz with 52,540 cycles required to calculate

one chunk over a65 � 65 search region. The reconfiguration time between templates

is equal to about 10 percent of the execution time. Putting these figures together gives

0.157 Q/s for the 6200 implementation.

Splash-2

The Splash-2 approach, which is detailed in [1] and [11], was developed using

the Xilinx 4010 FPGAs of Splash-2. These parts are relatively old. The performance

for a system using the newer 4010E series was also projected in [1]. To make the

comparison more realistic, the 4010E figures are used for the comparison. They predict

that a two-board Splash system with 32 4010E parts can process 40 chunks over a

128� 128 region in 26 ms. The calculations for the Altera and Xilinx 6200 system used

a search region of65 � 65 which is one fourth the number of pixels of a128 � 128

system. Consequently, the Splash-2 figure will be reduced to one fourth of 26 ms or 6.5

ms. Making the calculations for an entire Q and normalizing by the number of FPGAs

required gives 0.0668 Q/s for the Splash-2 implementation.

Workstation

Rencher compared the Splash-2 implementation to the performance of a

general purpose workstation in [11]. He reports that an HP 770 workstation running at

110 MHz required 59 seconds to process one orientation. By extrapolation this means it

would require 4248 seconds to process an entire Q. This calculation was done using a

113�113 search region. If the calculation time is reduced to compensate for the65�65

search region used in the other calculations, the workstation performance is711� 10�6

Q/s.

Table 7.3 summarizes the above figures and gives the speedup factor

over the workstation implementation. The table shows that the Altera and the 6200

implementations are in the same range of performance. The Splash-2 implementation
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is somewhat slower than the other two. This can be attributed to a slower clock speed

(22.2 MHz) as compared to the Xilinx 6200 implementation, and the sparse template

exploitation of the Altera implementation. Also, the size of the device is not figured in.

For example, the Xilinx 4010 parts of Splash-2 have 800 LUTs each while the Altera

FLEX 10K50 has 2880. That is a factor of 3.6 difference. If the Q/s figure for Splash-2

is multiplied by 3.6 to compensate, the result is 240 Q/s. The Xilinx 6200 uses a

fine-grained architecture which makes it more difficult to compare its size to that of the

other two. There are yet other factors such as cost of the system and power consumption

that are not included in the comparison. Given these shortcomings, the figures in the

table should only be taken as a starting point for a performance comparison.

Table 7.3: Performance Comparison
Platform cycles/offset Q/s Speedup

HP 770 - 711 � 10�6 1.0
Altera 70 235 � 10�3 330
Xilinx 6200 - 157 � 10�3 221
Altera 120 137 � 10�3 193
Splash-2 - 66:8 � 10�3 94

7.2 CAD Tools

The CAD tools greatly influence the performance of a VHDL-designed

circuit such as this one. The tools perform various optimizations in an attempt to achieve

the best speed and area results.

7.2.1 Synopsys

There are many options available in Synopsys and several different ways to

synthesize a given design. By experimentation, the combination of options was found

that resulted in the best clock speed for this design.

The first major option is the use of the Design Compiler versus the use of

the FPGA Compiler. The Design Compiler is a general purpose hardware compiler
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whereas the the FPGA Compiler is targeted at lut-based FPGAs. Theoretically, the

FPGA Compiler should work better for Altera parts since they are lut-based. In reality,

that was not the case for this design. This was attributed to the fact that both the FPGA

Compiler and the Design Compiler depend on libraries that are supplied by Altera.

If those libraries are not well constructed, Synopsys may not produce the best results

possible. The FLEX 10K parts were fairly new at the time this project was designed and

the libraries seemed to be lacking some refinement.

Another difference in the way a design can be compiled is global compilation

versus partitioned compilation. This means that the entire circuit can be compiled and

optimized as a whole, or the different modules of the design can be compiled and

optimized separately and then linked together. For this project, the modular compilation

produced much better results. Compiling by modules yielded a clock frequency increase

of more than 30% and a small reduction in area over compiling globally.

7.2.2 MAX+PLUS II

It was hoped that the MAX+PLUS II stage could be basically ‘‘push button’’,

that is, little user intervention required with the tool. To get good results, however,

manual placement was necessary. The placing algorithm for MAX+PLUS II seems to

scatter related design elements across the FPGA. This may be to prevent congestion in

any one part of the chip. For this design, however, this algorithm did not work well.

Better results were obtained by directing the tool to place related components near each

other. In fact, the final design would not completely route without this intervention.

46



Chapter 8

SYSTEM DESIGN AND SCALING ISSUES

In Chapter 5, a configuration was described with eight chunk processors

on a 10K50. The results in Chapter 7 were based on this configuration. This system

is discussed more extensively in this chapter, and specifically, how this system might

change as FPGAs increase in their logic capacity. Another issue discussed in this chapter

is how several FPGAs should be connected together along with memory for a multi-chip

system.

8.1 Single FPGA Configuration

The number of processors that fit on one FPGA is limited by:

� the logic and routing available on the FPGA,

� the amount of on-chip RAM available on the FPGA, and

� the amount of off-chip RAM that can beaccessed by the FPGA.

The eight processor system on the 10K50 is limited by internal routing. There are two

unused EABs and enough pins to access the off-chip RAM. There are also more logic

elements available, but the routing is too congested to allow more chunk processors.

The eight-chunk processors system was described in Chapter 5 and shown

in Figure 5.3 which is repeated here as Figure 8.1. It shows a block diagram of the eight

processor system that fits on the 10K50.

One part of the design not shown in the figure is the reconfiguration circuitry.

This is the circuitry that loads new template data onto the FPGA when needed. The data

that needs to be loaded is the EAB template data and the template constants. The EAB

template data consists of pixel offsets for the shapesum and masks for the shapesum,

brightsum, and surroundsum. The constants that have to be loaded are thethreshmin,

threshmax, brightmin, andsurroundmin from Section 2.2.5.
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Figure 8.1: Block Diagram for Processing Group of Eight Templates
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8.2 Multi-FPGA System

With the inherent parallelism in the ATR algorithm, it is simple and beneficial

to scale the system to several FPGAs running in parallel. The number of FPGAs that can

be included in a system is not limited by the algorithm, but by the available hardware.

Some grouping of the FPGAs in a multi-chip system is desirable. The results

from all the templates in a class have to be combined to form a score for the class, so

a class of templates should be grouped to run together. For example, with eight chunk

processors on a chip, a group of five chips can be formed to process one class all at

once. Figure 8.2 is a block diagram of such a system.

Flex 10K50
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RAM
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Flex 10K50

Flex 10K50

Flex 10K50

Image
RAM

Image
RAM

Image
RAM

Image
RAM

Image
RAM

Image
RAM
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Figure 8.2: System for Processing One Class (40 Bright, 40 Surround Templates)

Running several FPGAs together has the advantage that off-chip RAM can

be shared between FPGAs so the RAM to FPGA ratio goes down. As the diagram

illustrates, the same four image-RAMs can be used by all five 10K50s for their

surroundsum operations. A single FPGA system requires five off-chip RAMs but a

five FPGA system requires only nine off-chip RAMs. The number of RAMs required

is n + 4 wheren is the number of FPGAs in the system. This is because each FPGA

requires one RAM for the shapesum, but all FPGAs in a group can share the four RAMs
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for the surroundsum.

8.3 Scaling Up the Design

As the density and size of FPGAs increase, the question arises of how best to

configure the system to take advantage of the increased computational capacity, that is,

what is the best way to scale up the design for a larger part? There are numerous small

issues and questions involved here, but fundamentally, there are two choices: continue

to add processors to the group, or fix the group size and place multiple groups on the

FPGA.

8.3.1 Brute Force Method

To decide the best method, it is helpful to look at extreme cases. First,

assume the group size is increased to some very large number. As more and more

processors are added to the group, the number of on-bits in the master template increases

also. Theoretically, eventually all 256 locations in the master template could be on. This

means that 256 memory accesses would be required for every shapesum. The master

template would not be necessary since every pixel under the template would be fetched.

At the same time, each template would still have only a few of its bits on, meaning that

the circuitry for the shapesum and brightsum would lie idle most of the time. One of the

goals of this project was to overcome this inefficiency.

Although it seems inefficient to have idle circuitry, further work could be

done to determine if a system could be developed that reads all pixels under the template

and has better performance than the microcode system. Such a system could read all the

pixels under the template and use the EABs as masks for the shapesum, brightsum, and

surroundsum for each template. The benefits of such a system would be no performance

dependency on the template data and fewer off-chip RAMs. The master template would

be done away with so it would not matter if the templates combined well or not. Only

one off-chip RAM would be needed to store the image for the shapesum. The pixels

could be cached in an EAB and used for the brightsum and surroundsum. Or, several

off-chip RAMs could be used with several pixels being readeach cycle. This means

that several regions of the template would be calculated in parallel, which is the way the
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surroundsum is implemented in this project.

Further work would have to be done to determine if this ‘‘brute force’’

method would really be better than the microcode method. By comparing it to the

microcode method, though, it seems that it would not be better, for the following

reasons. As already noted, the surroundsum for the microcode version is already ‘‘brute

force’’ with four regions computed in parallel. Since the two methods are equivalent

in that respect, we need compare only the shapesum, threshold, and brightsum of each

method. The brute force shapesum, threshold, and surroundsum require essentially the

same circuitry as the microcode version, but without the address generation circuitry that

reads template bit offsets and calculates pixel addresses. This reduces the area somewhat

for the brute force method at the expense of clock cycles. All 256 pixels under the

template would have to be fetched. To achieve the same performance as the microcode

method, as measured in clock cycles, the brute force method must be made to process

two or possibly four pixels at a time. To accomplish this, the circuitry would have to

be duplicated to make two or four shapesum, threshold, and brightsum calculators. The

trade-off, then, is address generation circuitry, which includes one EAB, versus more

shapesum, threshold, and brightsum calculators. The address generation circuitry is

relatively small so it is probable that the microcode version would be smaller.

Of course, the brute force implementation could be made smaller by not

calculating four template regions in parallel. This would make it smaller than the

microcode version and would require two to four times as many cycles to process a

chunk. The advantage that the brute force method has, again, is that it does not depend on

template characteristics for its performance, and it requires fewer off-chip, and possibly

on-chip, RAMs.

8.3.2 Group Size

Assuming that the brute force method is not used, a group size needs to be

determined to implement the microcode method on larger devices. The 10K50 is limited

to eight processors so eight seemed to be a good number for the group size. For larger

devices, however, the decision is not so clear. The group size could be kept at eight, or it

could be increased, or it could even be decreased. There are many factors that influence

the decision.
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First, consider the hardware issues. Currently, the system uses eight chunk

processors in a group with one group on a 10K50. Now suppose a device becomes

available that fits 16 chunk processors on a chip. Should the 16 processors be combined

into one group, with shared memory, or should two groups of eight be formed? First,

look at the on-chip RAM requirements. For two groups of eight, 16 EABs are required.

For one group of 16, only 13 EABs are required. The logic requirements for two groups

will also be slightly higher than for one group. The off-chip RAM for one group is five

image RAMs, the same as for a group of eight. The number of image RAMs required

for two groups of eight is six, since the surround image RAMs can be shared among

groups as in the multi-chip system. Table 8.1 summarizes these numbers.

Table 8.1: Hardware Requirements for 16 Chunks
Group Size Groups EABs Off-Chip RAMs LEs

8 2 16 6 � 4600

16 1 13 5 � 4400

Second, consider the data issues. Two groups of eight will require approx-

imately the same number of cycles as one group of eight. Using one group of sixteen,

however, will generally increase the cycle count. How much of an increase it will make

is very dependent on the actual templates. The only way to estimate presently is to look

at the synthesized templates in Appendix A. An example of how a performance figure

can be calculated is presented later.

What all this says is that two groups of eight processors achieve better

performance than one group of 16, at the expense of more hardware. To say which

method is better is difficult. One possible metric that could be used to help decide is the

Area� Time metric or A-T. [2]. A-T should not be considered the authoritative answer,

but it can be used as a guide in deciding which method to use.

There are several difficulties with using A-T to calculate the performance in

this situation. One is determining the time variable, since the number of clock cycles

(time) required for computation is dependent on the template data. It is necessary to

resort to the synthesized templates to get some idea of how many clock cycles are
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required. Another difficulty is determining the area, since there are several area factors

involved. Should the number of EABs be used as the area, or the number of off-chip

RAMs, or the number of logic elements, or some weighted sum of all three?

To begin somewhere, take each of the possible area measurements and make

an A-T calculation for each. For the time factor, use the clock cycles for the parameters

� = �4:8, �1;� = 2:4, and�2;� = 1:0. For 20 on-bits per template the 8-group has

approximately 50 on-bits in the master template while the 16-group has approximately

70 on-bits. Table 8.2 shows the resulting A-T results using these figures. As can be seen,

Table 8.2: A-T Comparison
Area Templates

Measurement per Group
Area Time A � T difference

8 16 70 cycles 1120EABs
16 13 85 Cycles 1105 -1.3 %

Image 8 6 70 cycles 420
RAM 16 5 85 Cycles 425 1.2 %

8 4600 70 cycles 322,000LEs
16 4400 85 Cycles 374,000 16 %

the difference in performance measured in this way is slight. Given the approximations

used in deriving the area and time factors, the difference is insignificant. For different

MRF parameters and a different number of on-bits, however, the differences might be

greater.

What can be concluded from this example is that the optimum group size is

dependent on template data. Smaller groups will have better performance at a higher

cost of hardware. Just how much better the performance depends on the template data.

Until more information about the templates is available, it is difficult to specify a best

group size exactly, but a good starting point is to make the group size just small enough

that the number of on-bits in the master template is around 50. This will result in the

threshold, brightsum, and surroundsum using about the same number of cycles so the

hardware is utilized most efficiently. If the group size is increased sufficiently, the

performance will approach that of the brute force method as more and more of the
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master template bits are turned on.

Practically speaking, the group size should be a divisor of 40 so that templates

are calculated along class boundaries. This is beneficial because the hitcount calculation

uses the results from all the templates in the class. If the group size divides 40, then

a class can be calculated either in parallel using multiple groups or sequentially by

reconfiguring between groups. The hitcount for the class can then be calculated.

8.3.3 Scaling Projection

What will a system using this implementation look like several years from

now? Obviously, FPGAs will have greater resources in the future. For a projection,

assume that the FPGAs available are five times the size, in resources, of current FPGAs.

For the FLEX 10K series, this means that the equivalent of the 10K50 will have 14,400

LEs and 50 EABs with the accompanying routing, assuming the ratio between LEs,

EABs, and routing is maintained.

What does this mean for this implementation? With a device five times

the current size of the 10K50, five groups of eight chunk processors would fit on one

FPGA. That is enough to process an entire class at one orientation on one device at

once. The requirements on the FPGA, shown in Table 8.3, would be 10,000 LEs, 40

EABs (assuming a 256� 8 EAB), nine image-RAMs, approximately 200 user I/O pins,

and sufficient routing. If a group size of ten were chosen instead of eight, less hardware

would be required. The EAB requirement would be reduced to 34, the off-chip RAM

reduced to eight, the I/O pins to approximately 180, and the required LEs would be

somewhat fewer, though not a significant number. This hardware reduction would come

with a possible increase in cycle count if the master templates of the groups had more

on-bits than the eight-template groups.

Table 8.3: Resource Requirements for a 5� Device
Group Size LEs EABs Image RAMs I/O Pins

8 10,000 40 9 200
10 < 10; 000 34 8 180
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The conclusion to draw from this is that to predict performance for larger

devices, a good estimate is to scale the present design results by the difference in

size of the larger FPGA. A device five times bigger than the current device will

have roughly five times better performance. The assumptions that are made with this

estimate are that the current relative numbers of EABs, LEs, and routing are kept the

same. This is a reasonable assumption. In contrast, it is not reasonable to assume

that user I/O will keep up since I/O pins usually do not scale with the rest of the

device. This should not be a problem for the foreseeable future since the pin count for

this implementation is relatively small. Another assumption made is that the current

implementation with groups of 8-10 templates is maintained. Currently, this appears to

be the best configuration.
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SUMMARY AND CONCLUSIONS

9.1 Summary

This thesis presents results of a project to research the use of the Altera

FLEX 10K with Automatic Target Recognition as the application. The stage of ATR

that was implemented is chunky SLD. Chunky SLD involves template matching with

8-bit gray-scale images and binary templates. The bright templates used are sparsely

populated which opens up possibilities for optimizing the implementation. The major

operations in chunky SLD are the shapesum, threshold, brightsum, and surroundsum.

The Altera FLEX 10K is an SRAM based family of FPGAs. The 10K is

particularly interesting because of the large embedded RAMs on chip. These RAMs

open up new possibilities for applications and performance in the area of configurable

computing. One goal of the project was to use these RAMs, and in particular, to use

them in the control section of the circuit.

The most noteworthy part of the chunky SLD implementation developed

at BYU is the shapesum and brightsum. These operations are similar to 2-D cross

correlation but due to the sparseness of the bright templates they can be performed

in significantly fewer thann2 operations. The method developed for this project to

implement the shapesum and brightsum stores relative offsets to template on-bits in an

EAB. These offsets are added to a base offset which allows direct access to the image

pixels that are needed for the operations. The surround template is divided into four

quadrants and all quadrants are calculated in parallel.

Chunky SLD is a highly parallel algorithm. To extend the implementation

so that multiple templates could be processed in parallel, bright templates are combined

into a master template. This makes it possible to share the EABs and off-chip RAM

between several chunk processors.

Because the performance of the implementation is dependent on the actual

template data, and because sufficient template data was not available, it was necessary
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to synthesize templates for evaluation purposes. This provided a guideline for predicting

performance of this implementation.

A system composed of five FLEX 10K50s and nine image RAMs was

described. The performance of the system was measured in the time required to process

one Q. Using the minimum 70 cycles per image offset, this system is predicted to

process one Q 852 ms.

As larger devices become available, the question arises of how to scale

the design to take advantage of the greater capacity. It was determined that the

number of chunk processors in a group should be kept small---probably 8-10---for best

performance. As more FPGA area becomes available, more groups can be added to the

FPGA.

9.2 Conclusions

Section 1.3 listed three major goals of this project. They were to

� Exploit the sparseness of the bright templates,

� Utilize the on-chip RAM of the Altera FLEX 10K FPGA, and

� Demonstrate the use of embedded RAM for control.

These were met in the following ways.

Exploit Sparseness

The bright templates are sparsely populated. Since the algorithm requires that

only the image pixels under the on-bits in the bright template be used for the shapesum

and brightsum, it was determined that better performance could be achieved by loading

only those pixels from the image memory. This was accomplished by designing a system

that stores relative offsets to the on-bits in the on-chip RAM. This makes it possible to

calculate the address of a necessary pixel every clock cycle. This significantly reduces

the number of memory accesses required to perform the shapesum and brightsum. The

surroundsum was not implemented with this method because the surround templates are

not sparsely populated. Instead, the surround template was divided into four quadrants

with all quadrants calculated in parallel.
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Utilize On-Chip RAM

Altera is one of the first FPGA makers to dedicate resources strictly to RAM.

Other FPGAs allow configuration of logic cells as RAM but do not have dedicated

RAM. Because the RAM is specifically designed as RAM and not as general logic

hardware, it is more dense which means it has a much higher capacity than the logic

cell RAM of other devices. This project uses between four and five kilobytes of the

available 20 kilobytes of embedded RAM on the 10K50. If logic cells were used to

implement this RAM instead, 250 to 300 four input LUTs would be required. This is a

significant fraction of the available LUTs on current FPGAs. The routing requirement

for the LUT RAM addressing would also be significant. The 10K50 EABs were used

for the following purposes:

� The offsets to the on-bits of the bright templates are stored there,

� Mask bits are stored which control the operation of the accumulators and counters

in the shapesum, brightsum, and surroundsum, and

� Image pixels are stored there as they are loaded for the shapesum so that they do

not have to be reloaded for the brightsum.

Embedded RAM for Control

FPGA RAM can be used for many things, but most uses and proposed uses

are for some type of data buffer. The attempt in this project was to use the EABs on

the 10K for control, rather than or in addition to using them for temporary data storage.

This was done by storing the template information in the EABs. The offsets and mask

bits that were stored in the EABs can be viewed as microinstructions for the chunk

processor. With each new template to be processed, the EABs are loaded with new

microinstructions. This, in effect, reconfigures the device for new templates.

The performance of this system is good when compared to other imple-

mentations of the same algorithm on different platforms. Table 7.3 compares the

implementation on the Altera 10K50 with the implementations on two other platforms

and shows that the Altera performance is as good or better than other systems, using the

figures currently available.
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Perhaps the biggest drawback of this implementation is its dependency on

template data for performance. If the template data is favorable, this is actually not a

drawback but a strength. The template synthesis gives some indication that templates

will not likely combine as well as hoped. This lowers performance somewhat, but not

enough to make the implementation unusable. If the templates combined so poorly that

the number of clock cycles doubled, this would double the time required to calculate one

Q. As Table 7.3 shows, the performance would still be good relative to other platforms.

This project was successful in many respects. The project goals given in

the introduction were attained. This was done while at the same time achieving good

performance. Although finding the best implementation for chunky SLD was not one

of the primary goals of this project, the implementation presented here is definitely a

candidate for use in a real system. Beyond that, it demonstrates an innovative use of

embedded RAM in FPGAs and shows that large, embedded RAM is a valuable FPGA

commodity for some applications. Finally, it is yet another example of how FPGAs can

be used with good results for real-world, computationally intensive problems.
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Appendix A

TEMPLATE SYNTHESIS RESULTS

This appendix presents the details of the template synthesis discussed in

Chapter 6. First, Markov Random Fields [8] are discussed, then they are related to

templates. After that, the algorithm is presented that was used to generate the template

data. Finally, the results of the synthesis are given.

A.1 Template Model

The bright templates were modeled with Markov Random Fields.

A.1.1 Markov Random Fields

A Markov random field is a statistical model for two dimensional data. It

is a joint probability density over a two dimensional field where the probability of any

location,X(m;n), in that field taking on a given value is dependent only on the values

of the neighbors ofX(m;n). In other words, it is a limited joint probability density.

The limitation is that the joint probability is only between a location and its neighbors,

and not between a location and all locations in the entire field.

Theorder of the MRF determines the number of neighbors used in the joint

probability calculation. A first order MRF uses closest neighbor dependency while a

higher order MRFs extend the dependency to more distant neighbors. Figure A.1 shows

the neighbors of a position X that are included in the probability calculation for that

position. For example, a first order MRF would include the locations marked with a

‘‘1’’ in calculating the probability that the location has a certain value. A second order

MRF would include the locations marked ‘‘1’’ and ‘‘2’’, and so on.

A.1.2 MRFs and Templates

For template modeling, a MRF works as follows. The template, or random

field, is binary so the only values that a pixel can be are ‘‘1’’ and ‘‘0’’. What the MRF
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Figure A.1: Nth Order Neighbors for a Markov Random Field

model says is that the probability of any pixel being a ‘‘1’’ depends on the values of its

neighbors. In general, a MRF could either stipulate that if surrounding pixels are ‘‘1’’s,

a pixel is more likely to be ‘‘1’’, or it could stipulate that the pixel is more likely to

be ‘‘0’’. It can be even more complicated by specifying higher probabilities for some

neighbors and lower probabilities for others.

For a template, however, a pixel is more likely to be ‘‘1’’ if its neighbors

are ‘‘1’’s. This is because of the hypothesized cluster feature of the templates. If the

parameters of the model are chosen to reflect this idea, the result is that on-bits will

be more likely found in groups than spread out. The other two criteria, sparseness and

centering, are taken care of by the MRF generation algorithm, and not specifically by

the Markov model. A MRF does not allow providing positional information within the

field.

The MRF does not specify what probability distribution is actually used to

calculate the probability of a certain pixel. The distribution is something that must be

chosen. The one used for template generation is a binomial model which is discussed in

[9].

A.2 Synthesis Algorithm

The algorithm used to synthesize the templates comes from [9]. This

algorithm is designed to generate Markov random field gray-scale images. For template

generation, the image has just two possible pixel values. The algorithm works by first

generating a completely random image and then moving pixels around in the image
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until a state is reached where the image meets the Markov criteria.

The heart of the algorithm is the switching routine. This routine continually

and randomly chooses two pixels in the image and swaps them if the resulting image

will be ‘‘better’’ than the image without these two pixels swapped. ‘‘Better’’ means

that one image has a higher joint probability than the other. When this swapping is done

enough times, the resulting image parameters meet the desired parameters to within

some small error. There is a little twist that keeps the images from converging to the

same image each time. The two pixels may be swapped even if the resulting image is

not better than the previous image. This swap is based on a random toss of the die.

Before applying the switching routine, an initial image must be generated.

This can be any image with the number of on-bits desired. It is this initial image that

controls the number of on-bits to meet the sparse requirement of the templates. The

switching routine swaps pixels but it does not create new on pixels or delete old ones.

That means that if a template with 10 on-bits is to be synthesized, then an initial template

with any 10 bits turned on should be input to the switching routine. Practically speaking,

the initial image should be random. That is, a template with 10 (or however many)

random bits turned on should be generated. After applying the switching routine, the

image will still have 10 bits on but they will be rearranged.

The last piece that is needed for the MRF generator is a probability

distribution. This is used to calculate the probability that a given bit is on. As will be

seen, the order of the MRF as well as the strength of the clustering is incorporated into

the probability function.

The algorithm is discussed in more detail in the following sections.

A.2.1 Switching Routine

The switching routine is shown here in C-type pseudo-code.

1: while (!stable()) {

2: randomly choose sites pix1, pix2, with pix1 != pix2;

3: ratio = p(Y) / p(X);

4: if (ratio >= 1.0)

5: switch(pix1, pix2);
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6: else {

7: randval = uniform random on [0,1];

8: if (ratio > randval)

9: switch(pix1, pix2);

10: }

11: }

The lines of code have the following meanings:

1. The stable() function returns TRUE if the number of successful switches

drops below a certain percentage of total attempted switches for the current

iteration. One iteration is defined as a number of attempted switches equal to the

number of pixels in the image. For example, in a 16� 16 image one iteration

is 256 attempted switches. [9] shows that stability can be reached in under ten

iterations. Stability can also be based on how closely the parameters of the image

meet the input parameters.

2. Choose two pixel locations randomly.

3. Y represents the state of the image with the pixels swapped.X represents the state

of the image without swapping the pixels.p(Y) is the joint probability of the

image with the pixels swapped.p(X) is the joint probability of the image with

the pixels not swapped. The method for calculating the joint probability of the

image is discussed later.

4. If the new state (Y) is better than the old state (X), thenratio will be greater or

equal to 1.0.

5. The algorithm swaps the pixels because doing so results in an image that meets the

desired parameters more closely.switch(pix1, pix2) simply accomplishes

the swap.

6. If the pixels are not swapped in the previous lines, there is still a chance they may

be swapped.

7. Roll a die.
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8. If the right number turns up...

9. Swap the pixels to perturb the system. This prevents the undesired effect of every

image settling to the same image.

A.2.2 Probability Function

The equations for the probability functions are presented here without the

theory behind them. The theoretical discussion can be found in [9].

The general equation forp(Y)=p(X) used in the switching routine above is

given by

p(Y)

p(X)
=

MY

i=1

p(X(i) = y(i) j pixels in neighborhood)
p(X(i) = x(i) j pixels in neighborhood)

: (A.1)

p(Y)=p(X) is thep(Y) / p(X) in the pseudo-code above.M is the total number of

pixels in the image. If the image isN � N thenM = N2. X(i) is a random variable

that represents theith pixel. y(i) is the value thatX(i) would take on in stateY. x(i)

is the value thatX(i) takes on in stateX. The method of calculatingp(X(i):::) is given

shortly.

Equation A.1 calculates the ratio of the joint probabilities of the image with

and without swapping two pixels. StateX is the state without swapping and stateY is

the state with swapping. Because only two pixels change between stateX andY, all

terms in the product cancel except for the probabilities of the two pixels in question. The

calculation for these two pixels is just the resulting probability with these two pixels

switched. With this simplification, the new formula forp(Y)=p(X) is

p(Y)

p(X)
=

p(X(i) = x(j) j neighbors)� p(X(j) = x(i) j neighbors)
p(X(i) = x(i) j neighbors)� p(X(j) = x(j) j neighbors)

(A.2)

Now, to calculatep(X(i) = x(j)) and so forth, a potential function is used.

This function is

p(X = xjneighbors) = p(X = xjT ) =
exT

1 + eT
: (A.3)

X is the random variable representing the pixel whose joint probability is being

calculated.x is the value of the pixel for which the probability is being calculated.T is

a parameter that is calculated from the neighbors ofX.
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The calculation ofT is where the Markov parameters enter in. It is given by

T = �+
OX

i=1

Ti: (A.4)

In this equation,� is an arbitrary constant, O is the order of the MRF, and theTi are

given by

T1 = �1;1(v1;1 + v1;3) + �1;2(v1;2 + v1;4)

T2 = �2;1(v2;1 + v2;3) + �2;2(v2;2 + v2;4)

T3 = �3;1(v3;1 + v3;3) + �3;2(v3;2 + v3;4)

T4 = �4;1(v4;1 + v4;2 + v4;5 + v4;6) + �4;2(v4;3 + v4;4 + v4;7 + v4;8):

Thevi;j are the neighborhood pixels and their position is shown in Figure A.2. The�i;j

are arbitrary parameters. These, along with�, control the characteristics of the MRF.

For template generation, these parameters control the strength and direction of the on-bit

clustering.

X v1,1

v1,2

v1,3

v1,4

v2,1v2,2

v2,3 v2,4

v3,1

v3,2

v3,3

v3,4

v4,1

v4,2v4,3

v4,4

v4,8v4,5

v4,6 v4,7

Figure A.2: Neighborhood Pixels for Calculating theT Parameter.

It is by adjusting�, �, and the order of the MRF that templates with varying

characteristics can be produced. The value of these parameters for real templates is not

known.

A.3 Synthesis Code

The synthesis algorithm was implemented as a C++ program. The C++ code

is included in Appendix C. The program was written to be flexible so that the MRF
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parameters, the number of on-bits per template, the number of templates in a group, and

the size of the templates could be altered easily. The program outputs the synthesized

templates in the form of pbm files. It also calculates the the number of on-bits in the

group of templates. Additional functionality was added so that the program generates

MATLAB m-code which plots the number of on-bits in a group as a result of the number

of on-bits per template.

A.4 Synthesis Results

Both first and second order MRFs were generated. Clustering strength in the

horizontal and vertical directions was assumed to be equal. This means that�1;1 = �1;2,

which will be denoted�1;�, and�2;1 = �2;2, which will likewise be denoted�2;�. First

order MRFs were generated simply by setting�2;� = 0:0.

The range of parameters that were tested were

� �1;� = 0:0:::4:4 in increments of 0.4,

� �2;� = 0:0:::3:0 in increments of 1.0, and

� � = 2�1;�.

All combinations of these values were synthesized.

The following pages show the results of the template synthesis. The results

are in the form of graphs which plot the number of on-bits in a group of templates with

varying parameters versus the number of on-bits per template in the group.

The parameters control the strength of the clustering of the Markov Random

Field generator.� is present in the potential function for any order MRF. The�

parameters are order dependent. For example,�1;1 and�1;2 are first order parameters

while �2;1 and�2;2 are second order parameters. The synthesis was done with allnth

order parameters the same. This means that�1;1 = �1;2 and so forth. The notation used

on the plots is�1;� = c which means�1;1 = �1;2 = c. Also, � was set to be equal to

2�1;�.

First and second order MRF templates were synthesized. The plots do not

distinguish between first and second order explicitly. This is because�2;� = 0:0 is the
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same as a first order MRF. To find all first order results, simply turn to the graphs with

�2;� = 0:0.

The horizontal axis represents the number of on-bits per template in the

group. The vertical axis represents the resulting number of on-bits in a combined group

of eight templates. All graphs have the same scale. There is a horizontal line on each

graph at 50 on-bits in the group. This is the maximum number of on-bits for best

performance with this implementation.

For each parameter set, there are two graphs. One is for eight templates in

the group, and the other is for 16 templates in the group. After each two pages of graphs,

there is a page of representative templates. The templates are in groups of eight. Each

group of eight has the same parameters as the corresponding plot on the page previous

to it. The templates have 12 on-bits each.
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Figure A.3: First Order Graphs, 8 Templates per Group
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Figure A.4: First Order Graphs, 16 Templates per Group
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Figure A.5: First Order Templates, 12 On-Bits per Template
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Figure A.6: Second Order Graphs�2;� = 1:0, 8 Templates per Group
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Figure A.7: Second Order Graphs�2;� = 1:0, 16 Templates per Group
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Figure A.8: Second Order Templates,�2;� = 1:0, 12 On-Bits per Template
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Figure A.9: Second Order Graphs�2;� = 2:0, 8 Templates per Group
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Figure A.10: Second Order Graphs�2;� = 2:0, 16 Templates per Group
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Figure A.11: Second Order Templates,�2;� = 2:0, 12 On-Bits per Template
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Figure A.12: Second Order Graphs�2;� = 3:0, 8 Templates per Group
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Figure A.13: Second Order Graphs�3;� = 3:0, 16 Templates per Group
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Figure A.14: Second Order Templates,�2;� = 3:0, 12 On-Bits per Template
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Appendix B

VHDL SOURCE CODE

The VHDL code for this project is presented here. The code has the hierarchy

shown in Figure B.1.

guts

surroundsum(n)

master

s_machine

hitcount

shapesum(n)

masks

addrgen

div

Figure B.1: VHDL Hierarchy

The modules have the following basic functions:

� master : Specifies the FPGA I/O. Registers most of the incoming signals.
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� guts : Instantiates most of the sub-modules and acts as the interface between

them.

� shapesum : Computes the shapesum, threshold, and brightsum. Instantiatesdiv

for the threshold divider.

� div : Performs the division for the threshold operation.

� surroundsum : Computes the surroundsum.

� s machine : Implements the controlling state machine.

� masks : Instantiates the EABs that store the template masks.

� addrgen : Computes the addresses for the off-chip image RAMs.

� hitcount : Tallies the hits from the chunk processors.

B.1 Entity and Architecture Files

B.1.1 master
-------------------------------------------------------------------------------

-- Brings signals on and off chip. Instances guts.vhd which instances

-- everything else.

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use work.surr4_p.all;

use work.addr_p.all;

use work.comps.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity master is

port(clk : in std_logic;

globalrst : in std_logic; -- Resets everything, including counts

clear : in std_logic; -- Clears the calculations

shpixel : in pixel_t;

s0pixel : in pixel_t;

s1pixel : in pixel_t;

s2pixel : in pixel_t;

s3pixel : in pixel_t;

reconfig : in std_logic;

func : in func_t;

loadaddr : in loadaddr_t;

loaddata : in loaddata_t;

clearaddr : in std_logic;
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shaddr : out extmemaddr_t;

s0addr : out extmemaddr_t;

s1addr : out extmemaddr_t;

s2addr : out extmemaddr_t;

s3addr : out extmemaddr_t;

newhit : out std_logic;

hits : out std_logic_vector(3 downto 0)

);

end master;

-------------------------------------------------------------------------------

-- architecture declaration

-------------------------------------------------------------------------------

architecture basic of master is

-- registered versions of the incoming pixels

signal shpixel_r : pixel_t;

signal s0pixel_r : pixel_t;

signal s1pixel_r : pixel_t;

signal s2pixel_r : pixel_t;

signal s3pixel_r : pixel_t;

-- registered reconfigure signals

signal reconfig_r : std_logic;

signal func_r : func_t;

signal loadaddr_r : loadaddr_t;

signal loaddata_r : loaddata_t;

signal clearaddr_r : std_logic;

begin

-- EAB address counter and other registered statements

process (clk)

begin

if clk’event and clk = ’1’ then

shpixel_r <= shpixel;

s0pixel_r <= s0pixel;

s1pixel_r <= s1pixel;

s2pixel_r <= s2pixel;

s3pixel_r <= s3pixel;

reconfig_r <= reconfig;

func_r <= func;

loadaddr_r <= loadaddr;

loaddata_r <= loaddata;

clearaddr_r <= clearaddr;

end if;

end process;

-----------------------------------------------------------------------------

-- Component Instantiations

-----------------------------------------------------------------------------

interface : guts

port map(clk => clk,

globalrst => globalrst,

clear => clear,

shpixel_r => shpixel_r,

s0pixel_r => s0pixel_r,

s1pixel_r => s1pixel_r,

s2pixel_r => s2pixel_r,

s3pixel_r => s3pixel_r,

reconfig_r => reconfig_r,
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func_r => func_r,

loadaddr_r => loadaddr_r,

loaddata_r => loaddata_r,

clearaddr_r => clearaddr_r,

shaddr => shaddr,

s0addr => s0addr,

s1addr => s1addr,

s2addr => s2addr,

s3addr => s3addr,

newhit => newhit,

hits => hits

);

end basic;

B.1.2 master
-------------------------------------------------------------------------------

-- Brings signals on and off chip. Instances guts.vhd which instances

-- everything else.

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use work.surr4_p.all;

use work.addr_p.all;

use work.comps.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity master is

port(clk : in std_logic;

globalrst : in std_logic; -- Resets everything, including counts

clear : in std_logic; -- Clears the calculations

shpixel : in pixel_t;

s0pixel : in pixel_t;

s1pixel : in pixel_t;

s2pixel : in pixel_t;

s3pixel : in pixel_t;

reconfig : in std_logic;

func : in func_t;

loadaddr : in loadaddr_t;

loaddata : in loaddata_t;

clearaddr : in std_logic;

shaddr : out extmemaddr_t;

s0addr : out extmemaddr_t;

s1addr : out extmemaddr_t;

s2addr : out extmemaddr_t;

s3addr : out extmemaddr_t;

newhit : out std_logic;

hits : out std_logic_vector(3 downto 0)

);

end master;

-------------------------------------------------------------------------------

-- architecture declaration

-------------------------------------------------------------------------------

architecture basic of master is
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-- registered versions of the incoming pixels

signal shpixel_r : pixel_t;

signal s0pixel_r : pixel_t;

signal s1pixel_r : pixel_t;

signal s2pixel_r : pixel_t;

signal s3pixel_r : pixel_t;

-- registered reconfigure signals

signal reconfig_r : std_logic;

signal func_r : func_t;

signal loadaddr_r : loadaddr_t;

signal loaddata_r : loaddata_t;

signal clearaddr_r : std_logic;

begin

-- EAB address counter and other registered statements

process (clk)

begin

if clk’event and clk = ’1’ then

shpixel_r <= shpixel;

s0pixel_r <= s0pixel;

s1pixel_r <= s1pixel;

s2pixel_r <= s2pixel;

s3pixel_r <= s3pixel;

reconfig_r <= reconfig;

func_r <= func;

loadaddr_r <= loadaddr;

loaddata_r <= loaddata;

clearaddr_r <= clearaddr;

end if;

end process;

-----------------------------------------------------------------------------

-- Component Instantiations

-----------------------------------------------------------------------------

interface : guts

port map(clk => clk,

globalrst => globalrst,

clear => clear,

shpixel_r => shpixel_r,

s0pixel_r => s0pixel_r,

s1pixel_r => s1pixel_r,

s2pixel_r => s2pixel_r,

s3pixel_r => s3pixel_r,

reconfig_r => reconfig_r,

func_r => func_r,

loadaddr_r => loadaddr_r,

loaddata_r => loaddata_r,

clearaddr_r => clearaddr_r,

shaddr => shaddr,

s0addr => s0addr,

s1addr => s1addr,

s2addr => s2addr,

s3addr => s3addr,

newhit => newhit,

hits => hits

);

end basic;
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B.1.3 guts
-------------------------------------------------------------------------------

-- Takes the pad signals from master.vhd and sends them where they

-- need to go. Instantiates most everything.

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use work.surr4_p.all;

use work.addr_p.all;

use work.comps.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity guts is

port(

-- Incoming

clk : in std_logic;

globalrst : in std_logic; -- Resets everything, including counts

clear : in std_logic; -- Clears the calculations

shpixel_r : in pixel_t; -- Registered incoming pixels

s0pixel_r : in pixel_t;

s1pixel_r : in pixel_t;

s2pixel_r : in pixel_t;

s3pixel_r : in pixel_t;

reconfig_r : in std_logic; -- Reconfiguration signals (registered)

func_r : in func_t;

loadaddr_r : in loadaddr_t;

loaddata_r : in loaddata_t;

clearaddr_r : in std_logic;

-- Outgoing

shaddr : out extmemaddr_t; -- Image memory address lines

s0addr : out extmemaddr_t;

s1addr : out extmemaddr_t;

s2addr : out extmemaddr_t;

s3addr : out extmemaddr_t;

newhit : out std_logic; -- Signals completion of one

-- iteration

hits : out std_logic_vector(3 downto 0)

);

end guts;

-------------------------------------------------------------------------------

-- architecture declaration

-------------------------------------------------------------------------------

architecture basic of guts is

-- constants for decoding which constant is being loaded

constant loadthrmin_c : std_logic_vector(2 downto 0) := "000";

constant loadthrmax_c : std_logic_vector(2 downto 0) := "001";

constant loadbrmin_c : std_logic_vector(2 downto 0) := "010";

constant loadbias_c : std_logic_vector(2 downto 0) := "011";

constant loadsurmin_c : std_logic_vector(2 downto 0) := "100";

constant loadconst_c : func_t := "010";

constant loadoffsets_c : func_t := "000";

-- state signals

signal state : state_t;

-- eab interface signals
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signal maskaddr : maskaddr_t;

signal brmask : eabdata_t;

signal surmask : surmask_t;

signal cache_sel : std_logic;

signal cache0_dout : pixel_t;

signal cache1_dout : pixel_t;

signal cache0_we : std_logic;

signal cache1_we : std_logic;

signal brpixel_r : pixel_t;

-- hitcount signals

signal brhits : std_logic_vector(ntemps_c-1 downto 0);

signal surhits : std_logic_vector(ntemps_c-1 downto 0);

-- other correlator interface signals

signal threshold : thresharray_t;

signal surpixel : pixelarray_t;

signal memenab : std_logic;

signal brpixel : pixel_t;

-- reconfigure signals (loading flags)

signal loadconst : std_logic_vector(4 downto 0);

signal loadoffsets : std_logic;

begin

-- concurrent statements

brpixel <= cache0_dout when cache_sel = ’0’ else

cache1_dout;

cache0_we <= cache_sel when

(state = both) or (state = thresh1) or (state = thresh2)

else ’0’;

cache1_we <= not cache_sel when

state = both or state = thresh1 or state = thresh2

else ’0’;

memenab <= ’1’;

surpixel(0) <= s0pixel_r;

surpixel(1) <= s1pixel_r;

surpixel(2) <= s2pixel_r;

surpixel(3) <= s3pixel_r;

process (reconfig_r, func_r)

begin

if (reconfig_r = ’1’ and func_r = loadoffsets_c) then

loadoffsets <= ’1’;

else

loadoffsets <= ’0’;

end if;

end process;

process (loadaddr_r, reconfig_r, func_r)

begin

if reconfig_r = ’1’ and func_r = loadconst_c then

case loadaddr_r(loadaddr_r’left downto loadaddr_r’left-2) is

when loadthrmin_c =>

loadconst <= "00001";

when loadthrmax_c =>

loadconst <= "00010";

when loadbrmin_c =>

loadconst <= "00100";

when loadbias_c =>

loadconst <= "01000";

when loadsurmin_c =>

loadconst <= "10000";
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when others =>

loadconst <= "00000";

end case;

else

loadconst <= "00000";

end if;

end process;

-- EAB address counter and other registered statements

process (clk)

begin

if clk’event and clk = ’1’ then

brpixel_r <= brpixel;

loadoffsets <= ’0’;

if reconfig_r = ’1’ then

if func_r = loadoffsets_c then

loadoffsets <= ’1’;

end if;

if clearaddr_r = ’0’ then

maskaddr <= (others => ’0’);

else

maskaddr <= maskaddr + 1;

end if;

else

case state is

when reset1 =>

maskaddr <= (others => ’0’);

cache_sel <= ’0’;

when init1 =>

maskaddr <= (others => ’0’);

cache_sel <= not cache_sel;

when others =>

maskaddr <= maskaddr + 1;

end case;

end if;

end if;

end process;

-----------------------------------------------------------------------------

-- Component Instantiations

-----------------------------------------------------------------------------

-- shapesum and surround correlation

corr : for cnt in 0 to ntemps_c - 1 generate

shapes : shapesum

generic map (mynumber => cnt)

port map (clk => clk,

globalrst => globalrst,

state => state,

shpixel => shpixel_r,

brpixel => brpixel_r,

mask => brmask(cnt),

constaddr => loadaddr_r(2 downto 0),

constflags => loadconst(3 downto 0),

constdata => loaddata_r,

threshout => threshold(cnt),

hit => brhits(cnt)

);

surr : surround

generic map(number => cnt)

port map (
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clk => clk,

globalrst => globalrst,

state => state,

pixel => surpixel,

mask => surmask(cnt),

thresh => threshold(cnt),

constaddr => loadaddr_r(2 downto 0),

constflag => loadconst(4),

constdata => loaddata_r,

hit => surhits(cnt)

);

end generate;

masker : masks

port map (

clk => clk,

reconfig => reconfig_r,

func => func_r,

loadaddr => loadaddr_r,

loaddata => loaddata_r,

maskaddr => maskaddr,

brmask => brmask,

surmask => surmask

);

-- Hit count calculator

hitcounter : hitcount

port map (clk => clk,

state => state,

brhit => brhits,

surhit => surhits,

newhit => newhit,

hits => hits

);

-- off-chip-memory address generator

imaddr : addrgen

port map (clk => clk,

state => state,

loadmem_d => loadoffsets,

loadaddr => loadaddr_r,

loaddata => loaddata_r,

shaddr => shaddr,

s0addr => s0addr,

s1addr => s1addr,

s2addr => s2addr,

s3addr => s3addr

);

-- state machine

state_machine : s_machine

port map (clk => clk,

globalrst => globalrst,

clear => clear,

addr => maskaddr,

state => state

);

-- Image caches
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cache0 : syn_ram_64x8_iror

--pragma translate_off

generic map ( LPM_FILE => "" )

--pragma translate_on

port map ( Data => shpixel_r,

Address => maskaddr,

WE => cache0_we,

Q => cache0_dout,

Inclock => clk,

Outclock => clk

);

cache1 : syn_ram_64x8_iror

--pragma translate_off

generic map ( LPM_FILE => "" )

--pragma translate_on

port map ( Data => shpixel_r,

Address => maskaddr,

WE => cache1_we,

Q => cache1_dout,

Inclock => clk,

Outclock => clk

);

end basic;

B.1.4 shapesum
-------------------------------------------------------------------------------

-- Bright correlation and threshold calculation

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

use work.surr4_p.all;

use work.comps.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity shapesum is

generic (mynumber : integer);

port (clk : in std_logic;

globalrst : in std_logic;

state : in state_t;

shpixel : in pixel_t;

brpixel : in pixel_t;

mask : in std_logic;

constaddr : in std_logic_vector(2 downto 0);

constflags : in std_logic_vector(3 downto 0);

constdata : in pixel_t;
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threshout : out pixel_t;

hit : out std_logic

);

end shapesum;

-------------------------------------------------------------------------------

-- architecture declaration

-------------------------------------------------------------------------------

architecture basic of shapesum is

-- constant declarations

constant zeropad : std_logic_vector(accumwidth_c - 9 downto 0) := (others => ’0’);

-- type declarations

subtype accum_t is std_logic_vector (accumwidth_c-1 downto 0);

-- signals

signal accum : accum_t;

signal sub_out : pixel_t;

signal thresh : pixel_t;

signal threshold : pixel_t;

signal brsum : brsum_t;

signal mask_d1 : std_logic;

signal mask_d2 : std_logic;

-- signals for checking for hits

signal overthreshmin : boolean;

signal underthreshmax : boolean;

signal overbrightmin : boolean;

signal threshmin : pixel_t;

signal threshmax : pixel_t;

signal brightmin : brsum_t;

-- bias to subtract for theshold

signal bias : pixel_t;

-- signals for the divider

signal div_out : pixel_t;

signal divcount : unsigned(3 downto 0);

signal divrst : std_logic;

signal onbits : std_logic_vector(5 downto 0);

-----------------------------------------------------------------------------

-- Begin

-----------------------------------------------------------------------------

begin

-- Concurrent Statements

threshout <= threshold;

-- Registered signals

process (clk)

begin

if clk’event and clk = ’1’ then

mask_d1 <= mask;

mask_d2 <= mask_d1;

sub_out <= div_out - bias;

overthreshmin <= threshold >= threshmin;

underthreshmax <= threshold <= threshmax;

overbrightmin <= brsum >= brightmin;

divcount <= divcount + 1;

divrst <= ’0’;

onbits <= onbits + 1;

if (mask = ’1’) then

accum <= accum + (zeropad & shpixel);
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end if;

if (mask_d2 = ’1’ and brpixel >= threshold) then

brsum <= brsum + 1;

end if;

-- Load constants

if globalrst = ’1’ then

threshmin <= (others => ’0’);

threshmax <= (others => ’0’);

brightmin <= (others => ’0’);

bias <= (others => ’0’);

else

if constaddr = mynumber then

if constflags(0) = ’1’ then

threshmin <= constdata;

end if;

if constflags(1) = ’1’ then

threshmax <= constdata;

end if;

if constflags(2) = ’1’ then

brightmin <= constdata(brightmin’range);

end if;

if constflags(3) = ’1’ then

bias <= constdata;

end if;

end if;

end if;

case state is

when reset1 =>

accum <= (others => ’0’);

thresh <= (others => ’0’);

brsum <= (others => ’0’);

hit <= ’0’;

when init1 =>

threshold <= thresh;

when init2 =>

accum <= (others => ’0’);

when thresh2 =>

brsum <= (others => ’0’);

onbits <= (others => ’0’);

when wait1 =>

divrst <= ’1’;

when mult3 =>

if overthreshmin and underthreshmax and overbrightmin then

hit <= ’1’;

else

hit <= ’0’;

end if;

when sub =>

thresh <= sub_out;

when others =>

null;

end case;

end if;

end process;

-----------------------------------------------------------------------------

-- Component Instantiations

-----------------------------------------------------------------------------

divider : div

generic map (chunk_n => mynumber)

port map (

clk => clk,
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reset => divrst,

op => accum,

divisor => onbits,

result => div_out

);

end basic;

B.1.5 div
-------------------------------------------------------------------------------

-- Iterative Divider using Patterson and Hennessy p.220

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

--use work.div_p.all;

use work.comps.all;

entity div is

generic (chunk_n : integer); -- uniquifies the divider

port (

clk : in std_logic;

reset : in std_logic;

op : in std_logic_vector(13 downto 0);

divisor : in std_logic_vector(5 downto 0);

result : out std_logic_vector(7 downto 0)

);

end div;

architecture basic of div is

constant lhalf_c : integer := 6;

constant rhalf_c : integer := 14;

signal leftreg : std_logic_vector(lhalf_c - 1 downto 0);

signal rightreg : std_logic_vector(rhalf_c - 1 downto 0);

signal subresult : std_logic_vector(lhalf_c - 1 downto 0);

begin

result <= rightreg(result’range);

subresult <= leftreg - divisor;

process (clk)

begin

if clk’event and clk = ’1’ then

if reset = ’1’ then

rightreg <= op;

leftreg <= (others => ’0’);

else

rightreg(rightreg’left downto 1) <= rightreg(rightreg’left-1 downto 0);

if (subresult(subresult’left) = ’1’) then

rightreg(0) <= ’0’; -- negative, restore

leftreg <= leftreg(leftreg’left-1 downto 0) & rightreg(rightreg’left);

else

rightreg(0) <= ’1’; -- positive

leftreg <= subresult(subresult’left-1 downto 0) & rightreg(rightreg’left);

end if;

end if;

end if;

end process;

end basic;
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B.1.6 surroundsum
-------------------------------------------------------------------------------

-- Surround correlation

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use work.surr4_p.all;

use work.comps.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity surround is

generic (number : integer);

port (clk : in std_logic;

globalrst : in std_logic;

state : in state_t;

pixel : in pixelarray_t;

mask : in std_logic_vector(nsurr_c - 1 downto 0);

thresh : in pixel_t;

constaddr : in std_logic_vector(2 downto 0);

constflag : in std_logic;

constdata : in pixel_t;

hit : out std_logic

);

end surround;

-------------------------------------------------------------------------------

-- architecture declaration

-------------------------------------------------------------------------------

architecture basic of surround is

-- signal declarations

signal sum : sursum_t;

signal intersum0 : sursum4_t;

signal intersum1 : sursum4_t;

signal sursum1 : sursum4_t;

signal oversurmin : boolean;

signal surrmin : sursum4_t;

-----------------------------------------------------------------------------

-- Begin

-----------------------------------------------------------------------------

begin

-- Registered signals

process (clk)

begin

if clk’event and clk = ’1’ then

oversurmin <= sursum1 >= surrmin;

for region in 0 to nsurr_c - 1 loop

if (mask(region) = ’1’) and

(pixel(region) < thresh) then

sum(region) <= sum(region) + 1;

end if;

end loop;

intersum0 <= ("00" & sum(0)) + ("00" & sum(1));
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intersum1 <= ("00" & sum(2)) + ("00" & sum(3));

sursum1 <= intersum0 + intersum1;

-- Load constants

if globalrst = ’1’ then

surrmin <= (others => ’0’);

else

if constaddr = number and constflag = ’1’ then

surrmin <= constdata;

end if;

end if;

case state is

when reset1 =>

intersum0 <= (others => ’0’);

intersum1 <= (others => ’0’);

sursum1 <= (others => ’0’);

for region in 0 to nsurr_ c - 1 loop

sum(region) <= (others => ’0’);

end loop;

when init2 =>

for region in 0 to nsurr_ c - 1 loop

sum(region) <= (others => ’0’);

end loop;

when thresh2 =>

if oversurmin then

hit <= ’1’;

else

hit <= ’0’;

end if;

when others =>

null;

end case;

end if;

end process;

end basic;

B.1.7 smachine
-------------------------------------------------------------------------------

-- State Machine

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use work.surr4_p.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity s_machine is

port(clk : in std_logic;

globalrst : in std_logic;

clear : in std_logic;

addr : in maskaddr_t;
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state : out state_t

);

end s_machine;

-------------------------------------------------------------------------------

-- architecture declaration

-------------------------------------------------------------------------------

architecture basic of s_machine is

signal c_state, n_state : state_t;

signal divcount : unsigned(3 downto 0);

constant divmax : unsigned(3 downto 0) := "1110";

begin

state <= c_state;

-- Next state calculation

process (globalrst, clear, addr, c_state, divcount)

begin

if (globalrst = ’1’ or clear = ’1’) then

n_state <= reset1;

else

case c_state is

when reset1 => n_state <= reset2;

when reset2 => n_state <= init1;

when init1 => n_state <= init2;

when init2 => n_state <= thresh1;

when thresh1 => n_state <= thresh2;

when thresh2 => n_state <= both;

when both =>

if addr(brbits_c’range) = brbits_c then

n_state <= wait1;

else

n_state <= both;

end if;

when wait1 => n_state <= mult1;

when mult1 => n_state <= mult2;

when mult2 =>

if divcount = divmax then

n_state <= mult3;

else

n_state <= mult2;

end if;

when mult3 => n_state <= sub;

when sub => n_state <= surronly;

when surronly =>

if addr(surbits_c’range) = (surbits_c) then

n_state <= wait2;

else

n_state <= surronly;

end if;

when wait2 => n_state <= init1;

when others => n_state <= reset1;

end case;

end if;

end process;

-- Registered statements

process (clk)

begin

if clk’event and clk = ’1’ then

c_state <= n_state;

divcount <= divcount + 1;

if c_state = mult1 then
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divcount <= (others => ’0’);

end if;

end if;

end process;

end basic;

B.1.8 masks
-------------------------------------------------------------------------------

-- Controls the EABs that hold the template masks.

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use work.surr4_p.all;

use work.comps.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity masks is

port(clk : in std_logic;

reconfig : in std_logic;

func : in func_t;

loadaddr : in loadaddr_t;

loaddata : in loaddata_t;

maskaddr : in maskaddr_t;

brmask : out eabdata_t;

surmask : out surmask_t

);

end masks;

-------------------------------------------------------------------------------

-- architecture declaration

-------------------------------------------------------------------------------

architecture basic of masks is

constant brfunc_c : func_t := "001";

constant surr0func_c : func_t := "100";

constant surr1func_c : func_t := "101";

constant surr2func_c : func_t := "110";

constant surr3func_c : func_t := "111";

signal addr : maskaddr_t;

signal surrdata : eabdatarray_t;

signal brwe : std_logic;

signal surr0we : std_logic;

signal surr1we : std_logic;

signal surr2we : std_logic;

signal surr3we : std_logic;

begin

brwe <= ’1’ when reconfig = ’1’ and func = brfunc_c else

’0’;

surr0we <= ’1’ when reconfig = ’1’ and func = surr0func_c else

’0’;

surr1we <= ’1’ when reconfig = ’1’ and func = surr1func_c else

’0’;

surr2we <= ’1’ when reconfig = ’1’ and func = surr2func_c else
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’0’;

surr3we <= ’1’ when reconfig = ’1’ and func = surr3func_c else

’0’;

addr <= loadaddr(addr’range) when reconfig = ’1’ else

maskaddr;

process(surrdata)

begin

for template in ntemps_c - 1 downto 0 loop

for quad in nsurr_c - 1 downto 0 loop

surmask(template)(quad) <= surrdata(quad)(template);

end loop;

end loop;

end process;

-----------------------------------------------------------------------------

-- Component Instantiations

-----------------------------------------------------------------------------

-- shapesum mask EAB

brmaskmem : syn_ram_64x8_iror

--pragma translate_off

generic map( LPM_FILE => "")

--pragma translate_on

port map(

Data => loaddata,

Address => addr,

WE => brwe,

Q => brmask,

Inclock => clk,

Outclock => clk

);

-- surround0 mask EAB

surrmask0 : syn_ram_64x8_iror

--pragma translate_off

generic map ( LPM_FILE => "")

--pragma translate_on

port map(

Data => loaddata,

Address => addr,

WE => surr0we,

Q => surrdata(0),

Inclock => clk,

Outclock => clk

);

-- surround1 mask EAB

surrmask1 : syn_ram_64x8_iror

--pragma translate_off

generic map ( LPM_FILE => "")

--pragma translate_on

port map (

Data => loaddata,

Address => addr,

WE => surr1we,

Q => surrdata(1),

Inclock => clk,

Outclock => clk

);

-- surround2 mask EAB

surrmask2 : syn_ram_64x8_iror

--pragma translate_off

generic map ( LPM_FILE => "")

--pragma translate_on
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port map (

Data => loaddata,

Address => addr,

WE => surr2we,

Q => surrdata(2),

Inclock => clk,

Outclock => clk

);

-- surround3 mask EAB

surrmask3 : syn_ram_64x8_iror

--pragma translate_off

generic map ( LPM_FILE => "")

--pragma translate_on

port map (

Data => loaddata,

Address => addr,

WE => surr3we,

Q => surrdata(3),

Inclock => clk,

Outclock => clk

);

end basic;

B.1.9 addrgen
-------------------------------------------------------------------------------

-- Address generator for off-chip RAM

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

use work.surr4_p.all;

use work.addr_p.all;

use work.comps.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity addrgen is

port(clk : in std_logic;

state : in state_t;

loadmem_d : in std_logic;

loadaddr : in loadaddr_t;

loaddata : loaddata_t;

shaddr : out extmemaddr_t;

s0addr : out extmemaddr_t;

s1addr : out extmemaddr_t;

s2addr : out extmemaddr_t;

s3addr : out extmemaddr_t

);

end addrgen;

-------------------------------------------------------------------------------

-- architecture declaration
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-------------------------------------------------------------------------------

architecture basic of addrgen is

signal eabaddr : std_logic_vector(5 downto 0);

signal eabaddr_m : std_logic_vector(5 downto 0);

signal xinc, yinc : std_logic_vector (3 downto 0);

signal eabdata : std_logic_vector(7 downto 0);

signal xbaseaddr : std_logic_vector(6 downto 0);

signal ybaseaddr : std_logic_vector(6 downto 0);

signal memenab : std_logic;

signal surrcount : std_logic_vector(5 downto 0);

signal loadaddr_d : loadaddr_t;

signal loaddata_d : loaddata_t;

signal s0,s1,s2,s3 : extmemaddr_t;

-----------------------------------------------------------------------------

-- Valid pixel values are needed on all cycles in the "both" and "thresh" states.

-- This is how things need to be synchronized. Call the cycle when the pixel

-- is needed time = t.

-- t-4: EAB address calculated (cleared or incremented) and registered

-- t-3: xinc and yinc read from EAB and registered. Baseaddr

-- calculated (cleared, incremented, or nothing) and registered

-- t-2: pixel address calculated (baseaddr + inc) and registered

-- t-1: pixel read and registered.

-- t : pixel used

-----------------------------------------------------------------------------

begin

-- concurrent statements

memenab <= ’1’;

xinc <= eabdata(xinc’range);

yinc <= eabdata(7 downto 4);

eabaddr_m <= loadaddr_d(eabaddr_m’range) when loadmem_d = ’1’ else

eabaddr;

-- clocked statements

process (clk)

begin

if clk’event and clk = ’1’ then

loadaddr_d <= loadaddr;

loaddata_d <= loaddata;

eabaddr <= eabaddr + 1;

surrcount <= surrcount + 1;

shaddr <= (ybaseaddr + ("000" & yinc)) &

(xbaseaddr + ("000" & xinc));

s0addr <= (ybaseaddr + ("0000" & surrcount(5 downto 3))) &

(xbaseaddr + ("0000" & surrcount(2 downto 0)));

s1addr <= (ybaseaddr + ("0000" & surrcount(5 downto 3))) &

(xbaseaddr + ("0001" & surrcount(2 downto 0)));

s2addr <= (ybaseaddr + ("0001" & surrcount(5 downto 3))) &

(xbaseaddr + ("0000" & surrcount(2 downto 0)));

s3addr <= (ybaseaddr + ("0001" & surrcount(5 downto 3))) &

(xbaseaddr + ("0001" & surrcount(2 downto 0)));

case state is

when reset1 =>

xbaseaddr <= (others => ’0’);

ybaseaddr <= (others => ’0’);

eabaddr <= (others => ’0’);

surrcount <= (others => ’0’);

when reset2 =>

xbaseaddr <= (others => ’0’);

ybaseaddr <= (others => ’0’);

surrcount <= (others => ’0’);
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when surronly =>

eabaddr <= (others => ’0’);

when wait2 =>

if xbaseaddr = search_max_c then

xbaseaddr <= (others => ’0’);

ybaseaddr <= ybaseaddr + 1;

else

xbaseaddr <= xbaseaddr + 1;

end if;

surrcount <= (others => ’0’);

when others => NULL;

end case;

end if;

end process;

-----------------------------------------------------------------------------

-- Component Instantiations

-----------------------------------------------------------------------------

brmap : syn_ram_64x8_iror

--pragma translate_off

generic map (LPM_FILE => "")

--pragma translate_on

port map (

Data => loaddata_d,

Address => eabaddr_m,

WE => loadmem_d,

Q => eabdata,

Inclock => clk,

Outclock => clk

);

end basic;

B.1.10 hitcount
-------------------------------------------------------------------------------

-- Hitcount calculation

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

use work.surr4_p.all;

use work.comps.all;

-------------------------------------------------------------------------------

-- Entity Declaration

-------------------------------------------------------------------------------

entity hitcount is

port (clk : in std_logic;

state : in state_t;

brhit : in std_logic_vector(ntemps_c-1 downto 0);

surhit : in std_logic_vector(ntemps_c-1 downto 0);

newhit : out std_logic;

hits : out std_logic_vector(3 downto 0)

);

end hitcount;
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-------------------------------------------------------------------------------

-- architecture declaration

-------------------------------------------------------------------------------

architecture basic of hitcount is

-- type declarations

subtype decode_t is std_logic_vector(2 downto 0);

-- signal declarations

signal bothhit : std_logic_vector(7 downto 0);

signal count : std_logic_vector(3 downto 0);

signal opleft, opright : decode_t;

-- Counts the incoming hits from the bright and surround correlations

function decode (op : std_logic_vector(3 downto 0))

return decode_t is

begin

case op is

when "0000" => return "000";

when "0001" => return "001";

when "0010" => return "001";

when "0011" => return "010";

when "0100" => return "001";

when "0101" => return "010";

when "0110" => return "010";

when "0111" => return "011";

when "1000" => return "001";

when "1001" => return "010";

when "1010" => return "010";

when "1011" => return "011";

when "1100" => return "010";

when "1101" => return "011";

when "1110" => return "011";

when "1111" => return "111";

when others => return "---";

end case;

end decode;

-----------------------------------------------------------------------------

-- Begin

-----------------------------------------------------------------------------

begin

-- Registered signals

process (clk)

begin

if clk’event and clk = ’1’ then

bothhit <= (others => ’0’);

bothhit(brhit’range) <= brhit and surhit;

opright <= decode(bothhit(3 downto 0));

opleft <= decode(bothhit(7 downto 4));

count <= ("0" & opleft) + ("0" & opright);

case state is

when reset1 =>

hits <= (others => ’0’);

newhit <= ’0’;

when wait1 =>

hits <= count;
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newhit <= ’1’; -- Signals a new result

when others =>

newhit <= ’0’;

end case;

end if;

end process;

end basic;

B.2 Package Files

B.2.1 surr4 p
-------------------------------------------------------------------------------

-- Package for the whole design. Contains most type declarations and

-- constants.

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

package surr4_p is

-- Make design as paramaterized as possible. Put constants and types in

-- one file so they are easy to change.

constant ntemps_c : integer := 8; -- #of templates

constant nsurr_c : integer := 4; -- #of regions for surround

constant brsumwidth_c : integer := 6; -- width of the bright sum in bits

constant sursumwidth_c : integer := 6; -- width of one surround sum

constant sursum4width_c : integer := sursumwidth_c+2; -- with of the total surround sum

constant maskaddrwidth_c : integer := sursumwidth_c;

constant accumwidth_c : integer := 14;

constant eabdatawidth : integer := 8;

constant funcwidth_c : integer := 3;

constant loadaddrwidth_c : integer := 8;

constant loaddatawidth_c : integer := 8;

subtype brsum_t is std_logic_vector(brsumwidth_c - 1 downto 0); -- bright sum type

type sursum_t is array (nsurr_c-1 downto 0) of std_logic_vector(sursumwidth_c - 1 downto 0);

subtype sursum4_t is std_logic_vector(sursum4width_c - 1 downto 0);

subtype maskaddr_t is std_logic_vector(maskaddrwidth_c - 1 downto 0);

subtype eabdata_t is std_logic_vector(eabdatawidth-1 downto 0);

subtype loaddata_t is std_logic_vector(loaddatawidth_c-1 downto 0);

subtype loadaddr_t is std_logic_vector(loadaddrwidth_c-1 downto 0);

subtype func_t is std_logic_vector(funcwidth_c-1 downto 0);

constant brbits_c : brsum_t := "011000"; -- #bits o n - 1 in combined templates

constant surbits_c : std_logic_vector(sursumwidth_c - 1 downto 0) := "111110";

subtype pixel_t is std_logic_vector(7 downto 0);

type pixelarray_t is array (nsurr_c-1 downto 0) of pixel_t;

type brsumarray_t is array (ntemps_c-1 downto 0) of brsum_t;

type sursum4array_t is array (ntemps_c-1 downto 0) of sursum4_t;

type sursuminter_t is array (ntemps_c-1 downto 0) of sursum_t;-- dummy type

type sursumarray_t is array (nsurr_c-1 downto 0) of sursuminter_t;

type eabdatarray_t is array (nsurr_c - 1 downto 0) of eabdata_t;

type thresharray_t is array (ntemps_c-1 downto 0) of pixel_t;

type surmask_t is array (ntemps_c-1 downto 0)

of std_logic_vector(nsurr_c - 1 downto 0);
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-- State machine encoding

type state_t is (reset1, reset2, init1, init2, thresh1, thresh2, both, wait1,

mult1, mult2, mult3, sub, surronly, wait2);

-- attribute enum_encoding : string;

-- attribute enum_encoding of state_t : type is

-- (

-- "10000000000000 " & "01000000000000 " & "00100000000000 " & "00010000000000 " &

-- "00001000000000 " & "00000100000000 " & "00000010000000 " & "00000001000000 " &

-- "00000000100000 " & "00000000010000 " & "00000000001000 " & "00000000000100 " &

-- "00000000000010 " & "00000000000001 "

-- );

end surr4_p;

package body surr4_p is

end surr4_p;

B.2.2 addr p
-------------------------------------------------------------------------------

-- Package for the address generator

-- Richard Ross

-------------------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use work.surr4_p.all;

package addr_p is

constant extmemaddrw_c : integer := 14;

constant search_max_c : std_logic_vector(6 downto 0) := "1110000";

subtype extmemaddr_t is std_logic_vector (extmemaddrw_c-1 downto 0);

end addr_p;

package body addr_p is

end addr_p;

B.2.3 comps
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_1164.all;
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use ieee.std_logic_unsigned.all;

use work.surr4_p.all;

use work.addr_p.all;

package comps is

component addrgen

port(clk : in std_logic;

state : in state_t;

loadmem_d : in std_logic;

loadaddr : in loadaddr_t;

loaddata : loaddata_t;

shaddr : out extmemaddr_t;

s0addr : out extmemaddr_t;

s1addr : out extmemaddr_t;

s2addr : out extmemaddr_t;

s3addr : out extmemaddr_t

);

end component;

component div

generic (chunk_n : integer); -- uniquifies the divider

port (

clk : in std_logic;

reset : in std_logic;

op : in std_logic_vector(13 downto 0);

divisor : in std_logic_vector(5 downto 0);

result : out std_logic_vector(7 downto 0)

);

end component;

component guts

port(

-- Incoming

clk : in std_logic;

globalrst : in std_logic; -- Resets everything, including counts

clear : in std_logic; -- Clears the calculations

shpixel_r : in pixel_t; -- Registered incoming pixels

s0pixel_r : in pixel_t;

s1pixel_r : in pixel_t;

s2pixel_r : in pixel_t;

s3pixel_r : in pixel_t;

reconfig_r : in std_logic; -- Reconfiguration signals (registered)

func_r : in func_t;

loadaddr_r : in loadaddr_t;

loaddata_r : in loaddata_t;

clearaddr_r : in std_logic;

-- Outgoing

shaddr : out extmemaddr_t; -- Image memory address lines

s0addr : out extmemaddr_t;

s1addr : out extmemaddr_t;

s2addr : out extmemaddr_t;

s3addr : out extmemaddr_t;

newhit : out std_logic; -- Signals completion of one

-- iteration

hits : out std_logic_vector(3 downto 0)

);

end component;

component hitcount

port (clk : in std_logic;

state : in state_t;

brhit : in std_logic_vector(ntemps_c-1 downto 0);

surhit : in std_logic_vector(ntemps_c-1 downto 0);
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newhit : out std_logic;

hits : out std_logic_vector(3 downto 0)

);

end component;

component masks

port(clk : in std_logic;

reconfig : in std_logic;

func : in func_t;

loadaddr : in loadaddr_t;

loaddata : in loaddata_t;

maskaddr : in maskaddr_t;

brmask : out eabdata_t;

surmask : out surmask_t

);

end component;

component master

port(clk : in std_logic;

globalrst : in std_logic; -- Resets everything, including counts

clear : in std_logic; -- Clears the calculations

shpixel : in pixel_t;

s0pixel : in pixel_t;

s1pixel : in pixel_t;

s2pixel : in pixel_t;

s3pixel : in pixel_t;

reconfig : in std_logic;

func : in func_t;

loadaddr : in loadaddr_t;

loaddata : in loaddata_t;

clearaddr : in std_logic;

shaddr : out extmemaddr_t;

s0addr : out extmemaddr_t;

s1addr : out extmemaddr_t;

s2addr : out extmemaddr_t;

s3addr : out extmemaddr_t;

newhit : out std_logic;

hits : out std_logic_vector(3 downto 0)

);

end component;

component s_machine

port(clk : in std_logic;

globalrst : in std_logic;

clear : in std_logic;

addr : in maskaddr_t;

state : out state_t

);

end component;

component shapesum

generic (mynumber : integer);

port (clk : in std_logic;

globalrst : in std_logic;

state : in state_t;

shpixel : in pixel_t;

brpixel : in pixel_t;

mask : in std_logic;

constaddr : in std_logic_vector(2 downto 0);

constflags : in std_logic_vector(3 downto 0);

constdata : in pixel_t;
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threshout : out pixel_t;

hit : out std_logic

);

end component;

component surround

generic (number : integer);

port (clk : in std_logic;

globalrst : in std_logic;

state : in state_t;

pixel : in pixelarray_t;

mask : in std_logic_vector(nsurr_c - 1 downto 0);

thresh : in pixel_t;

constaddr : in std_logic_vector(2 downto 0);

constflag : in std_logic;

constdata : in pixel_t;

hit : out std_logic

);

end component;

component syn_ram_64x8_iror

--pragma translate_off

generic ( LPM_FILE : string );

--pragma translate_on

port ( Data : in std_logic_vector(7 downto 0);

Address : in std_logic_vector(5 downto 0);

WE : in std_logic;

Q : out std_logic_vector(7 downto 0);

Inclock : in std_logic;

Outclock : in std_logic

);

end component;

component tb_addrgen

end component;

component tb_div

end component;

component tb_hitcount

end component;

component tb_master

end component;

component tb_testmult

end component;

component tb_shapesum

end component;

component tb_surround

end component;

END comps;
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C++ SOURCE CODE

This appendix contains the C++ code that was used to generate synthetic

templates. The algorithm is explained in Appendix A.

C.1 Program Code

C.1.1 prog.C
#include <time.h>

#include <stdlib.h>

#include "matrix.h"

#define MINBITS 4

#define MAXBITS 40

void MatStuff(int, double, double, double);

int main(int argc, char *argv[])

{

int ntemps, xdim, ydim, iterations, i, pbmcount=0, graphcount=0, ave, avecount;

double params[3][3], a, b1, b2;

time_t seed;

group *temps;

FILE *paramfile;

char filename[32], instring[64], idstring[32];

//check usage

if (argc < 3) {

fprintf(stderr, "\nUsage: %s <ntemps> <paramfile> \n\n", argv[0]);

return 1;

}

// Seed random number generator

srand48(time(&seed));

sscanf(argv[1], "%d", &ntemps);

// open paramter file

if ((paramfile = fopen(argv[2], "r")) == 0) {

fprintf(stderr, "\nCouldn’t open parameter file \"%s\"\n\n", argv[2]);

return 1;

}

// Read paramters

fgets(instring, 256, paramfile);

sscanf(instring, " %d %d", &ydim, &xdim);

fgets(instring, 256, paramfile);

sscanf(instring, " %d", &iterations);

for (i=0; i<3; ++i) {

fgets(instring, 256, paramfile);

sscanf(instring, " %lf %lf %lf", &params[i][0], &params[i][1], &params[i][2]);

}

fclose(paramfile);

// Generate templates

temps = new group(ydim, xdim, ntemps);
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printf("\n%% MATLAB output. Place in a .m file and run from MATLAB.\n");

printf("x = %d:%d;\n", MINBITS, MAXBITS);

for (b2=params[2][0]; b2 <= params[2][2]; b2 += params[2][1]) {

for (b1=params[1][0]; b1 <= params[1][2]; b1 += params[1][1]) {

// for (a=params[0][0]; a <= params[0][2]; a += params[0][1]) {

a = -2.0 * b1;

if ((graphcount%12) == 0) {

printf("figure(%d)\n", graphcount/12 + 1);

}

++graphcount;

printf("\ny%d = [", graphcount);

for (i=MINBITS; i<=MAXBITS; ++i) {

ave = 0;

for (avecount = 0; avecount < 3; ++avecount) {

// printf("trial %d ", avecount);

temps->MakeTemps(iterations, i, a, b1, b2);

ave += temps->CountBits();

}

ave /= 3;

if (i==12) {

sprintf(filename, "group%d.pbm", pbmcount);

sprintf(idstring, "onbits = %d \ta = %0.1f \tb1 = %0.1f \tb2 = %0.1f",

i, a, b1, b2);

temps->MakePBM(filename, idstring);

++pbmcount;

}

printf("%d ", ave);

}

MatStuff(graphcount, a, b1, b2);

// }

}

}

if (graphcount%12)

printf("\norient tall;\npreprint;\nprint -deps plot%d\n", graphcount / 12);

return 0;

}

void MatStuff(int num, double a, double b1, double b2)

{

printf("];\n");

printf("subplot(4,3,%d); plot(x,y%d);\nhold;\n", (num-1)%12+1, num);

printf("%s%s",

"plot([0 30], [50 50]);\n",

"axis([0 30 0 100]);\n");

printf("string = ’\\link \\small \\alpha = %0.1f \\n \\beta_{1,*} = %0.1f \\n \\beta_{2,*} = %0.1f’;\n",

a, b1, b2);

printf("if y%d(15) > 50\n\tt1 = text(15, 30, string);\n", num);

printf("else\n\tt1 = text(1, 85, string);\nend;\nlink(t1);");

if ((num%12) == 0)

printf("\norient tall;\npreprint;\nprint -deps plot%d.eps\n", num / 12);

}

C.1.2 matrix.C
#include <stdlib.h>// for drand48()

#include <math.h>// for exp()

#include "matrix.h"
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/////////////////////////////////////////////////////////////////////////////

// matrix class

/////////////////////////////////////////////////////////////////////////////

matrix::matrix(int y, int x)

{

xdim = x;

ydim = y;

data = new element_t[xdim*ydim];

for (x=0; x<xdim; ++x)

for(y=0; y<ydim; ++y)

SetEl(y, x, (element_t)0);

}

matrix::matrix(char filename[])

{

int x,y;

FILE *infile;

char magic[2], inchar;

if ((infile = fopen(filename, "r"))==NULL) {

fprintf(stderr, "Couldn’t open %s\n", filename);

xdim = 0; ydim = 0;

data = NULL;

return;

}

fscanf(infile, " %c%c", magic, magic+1);

if (magic[0]==’P’ && magic[1]==’1’) {

fscanf(infile, " %d %d", &xdim, &ydim);

data = new element_t[xdim*ydim];

for (y=0; y<ydim; ++y) {

for (x=0; x<xdim; ++x) {

fscanf(infile, " %c", &inchar);

SetEl(y,x,(inchar==’0’) ? 0 : 1);

}

}

}

else {

fprintf(stderr, "Not an ASCII PBM file\n");

}

}

matrix::~matrix(void)

{

delete data;

}

void matrix::SetEl(int y, int x, element_t d)

{

if ((y>=0) && (y<ydim) && (x>=0) && (x<xdim)) {

data[y*xdim+x] = d;

}

else {

fprintf(stderr, "\nERROR!!! SetEl accessed (%d,%d). Max (%d,%d)\n\n",

y, x, ydim, xdim);

exit(1);

}

}

element_t matrix::GetEl(int y, int x)

{

if ((y>=0) && (y<ydim) && (x>=0) && (x<xdim))
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return data[y*xdim+x];

else {

fprintf(stderr, "\nERROR!!! GetEl accessed (%d,%d). Max (%d,%d)\n\n",

y, x, ydim, xdim);

exit(1);

return (element_t)0;

}

}

void matrix::Clear(void)

{

int x,y;

for (x=0; x<xdim; ++x)

for(y=0; y<ydim; ++y)

SetEl(y, x, (element_t)0);

}

void matrix::Scale(double factor)

{

int x, y;

for (y=0; y<ydim; ++y) {

for (x=0; x<xdim; ++x) {

SetEl(y,x,(element_t)((double)GetEl(y,x) * factor));

}

}

}

void matrix::Scale(int factor)

{

int x, y;

for (y=0; y<ydim; ++y) {

for (x=0; x<xdim; ++x) {

SetEl(y,x,GetEl(y,x) / factor);

}

}

}

void matrix::Show(void)

{

int x,y, index=0;

for (y=0; y<ydim; ++y) {

for (x=0; x<xdim; ++x) {

printf("%d ", data[index++]);

}

putchar(’\n’);

}

putchar(’\n’);

}

void matrix::Show(FILE *outfile)

{

int x,y, index=0;

for (y=0; y<ydim; ++y) {

for (x=0; x<xdim; ++x) {

fprintf(outfile, "%d ", data[index++]);

}
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putc(’\n’, outfile);

}

putc(’\n’, outfile);

}

void matrix::MakePBM(char *filename, int factor, int binary, char comment[])

{

FILE *outfile;

int x,y, m,n, index=0;

int xdim2 = xdim*factor, ydim2 = ydim*factor;

unsigned char outbyte=0;

if ((outfile = fopen(filename, "w")) == 0) {

fprintf(stderr, "\n\nERROR: Couldn’t open %s to write pbm file.\n\n", filename);

return;

}

if (binary) {

fprintf(outfile, "P4\n#%s\n%d %d\n", comment, xdim2, ydim2);

for (y=0; y<ydim; ++y) {

for (m=0; m<factor; ++m) {

for (x=0; x<xdim; ++x) {

for (n=0; n<factor; ++n) {

outbyte |= GetEl(y,x)? 1:0;

if (index == 7) {

index=0;

putc(outbyte, outfile);

outbyte = 0;

}

else {

outbyte <<= 1;

++index;

}

}

}

if (index) {

outbyte <<= (7-index);

putc(outbyte, outfile);

index=0;

outbyte = 0;

}

}

}

}

else {

// print header

fprintf(outfile, "P1\n#%s\n%d %d\n", comment, xdim2, ydim2);

for (y=0; y<ydim; ++y) {

for (m=0; m<factor; ++m) {

for (x=0; x<xdim; ++x)

for (n=0; n<factor; ++n)

fprintf(outfile, "%d ", GetEl(y,x));

putc(’\n’, outfile);

}

}

}

fclose(outfile);

}

/////////////////////////////////////////////////////////////////////////////

// btemplate class

/////////////////////////////////////////////////////////////////////////////

btemplate::btemplate(int y, int x) : matrix(y, x)

{

dim = y*x;
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onbits = 0;

}

btemplate::btemplate(char filename[]) : matrix(filename)

{

int x,y,xdim=GetXsize(), ydim=GetYsize();

dim = xdim*ydim;

for (y=0; y<ydim; ++y) {

for (x=0; x<xdim; ++x) {

if (GetEl(y,x))

++onbits;

}

}

}

btemplate::~btemplate(void)

{

}

void btemplate::Initialize(int bits, int o, double params[5][2])

{

int i, m, n;

order = o;

nchanges = 0;

Clear();

for (m=0; m < 5; ++m)

for (n=0; n < 2; ++n)

b[m][n] = params[m][n];

for (i=0; i<bits; ++i)

SetEl((int)(GetYsize() * drand48()), (int)(GetXsize() * drand48()), 1);

}

int btemplate::Pick2(int pix[])

{

int rval1, rval2;

rval1 = (int)(drand48() * dim);

for (rval2 = rval1; rval2 == rval1; rval2 = (int)(drand48() * dim));

pix[0] = rval1 / GetXsize();

pix[1] = rval1 % GetXsize();

pix[2] = rval2 / GetXsize();

pix[3] = rval2 % GetXsize();

return (GetEl(pix[0], pix[1])==0) && (GetEl(pix[2], pix[3])==1) ||

(GetEl(pix[0], pix[1])==1 && GetEl(pix[2], pix[3])==0);

// return 1;

}

void btemplate::Switch(int pix[])

{

element_t temp = GetEl(pix[0], pix[1]);

SetEl(pix[0], pix[1], GetEl(pix[2], pix[3]));

SetEl(pix[2], pix[3], temp);

++nchanges;

}

double btemplate::Ratio(int pix[])

{

double px, py, T1, T2;

// double d1, d2, dyfact=1.0;

// double xcenter = ((double)GetXsize()-1.0)/2.0, ycenter = ((double)GetYsize()-1.0)/2.0;
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int pix1 = GetEl(pix[0], pix[1]), pix2 = GetEl(pix[2], pix[3]);

T1 = CalcT(pix);

T2 = CalcT(pix+2);

px = exp(pix1 * T1) / ( 1 + exp(T1)) * exp(pix2 * T2 ) / ( 1 + exp(T2));

py = exp(pix1 * T2) / ( 1 + exp(T2)) * exp(pix2 * T1 ) / ( 1 + exp(T1));

return py/px;

}

double btemplate::CalcT(int pix[])

{

double T = 0.0;

element_t val[4];

val[0] = InRange(pix[0], pix[1]-1) ? GetEl(pix[0], pix[1] - 1): (element_t)0 ;

val[1] = InRange(pix[0], pix[1]+1) ? GetEl(pix[0], pix[1] + 1): (element_t)0 ;

val[2] = InRange(pix[0]-1, pix[1]) ? GetEl(pix[0]-1, pix[1]): (element_t)0 ;

val[3] = InRange(pix[0]+1, pix[1]) ? GetEl(pix[0]+1, pix[1]): (element_t)0 ;

T = b[0][0] + b[1][0] * (val[0]+val[1]) + b[1][1] * (val[2]+val[3]);

if (order > 1) {

val[0] = InRange(pix[0]-1, pix[1]-1) ? GetEl(pix[0]-1, pix[1]-1): (element_t)0 ;

val[1] = InRange(pix[0]+1, pix[1]+1) ? GetEl(pix[0]+1, pix[1]+1): (element_t)0 ;

val[2] = InRange(pix[0]-1, pix[1]+1) ? GetEl(pix[0]-1, pix[1]+1): (element_t)0 ;

val[3] = InRange(pix[0]+1, pix[1]-1) ? GetEl(pix[0]+1, pix[1]-1): (element_t)0 ;

T += b[2][0] * (val[0]+val[1]) + b[2][1] * (val[2]+val[3]);

}

return T;

}

void btemplate::Generate(int bits, int o, double params[5][2], int maxits)

{

int pix[4], iterations, i, nswitches=0, rswitches=0;

int x, y, ydim, xdim, maxattempts;

double ratio, u;

// printf("btemplate::Generate this=0x%x\n", this);

ydim = GetYsize();

xdim = GetXsize();

maxattempts=xdim*ydim;

Initialize(bits, o, params);

for (iterations=0; iterations<maxits; ++iterations) {

i=0;

while (i < maxattempts) {

if (Pick2(pix)) {

++i;

ratio = Ratio(pix);

if (ratio >= 1) {

++nswitches;

Switch(pix);

}

else {

u = drand48();

if (ratio > u) {

++rswitches;

Switch(pix);

}

}

}

}

}

// Count the number of on bits
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onbits=0;

for (y=0; y<ydim; ++y)

for (x=0; x<xdim; ++x)

if (GetEl(y,x))

++onbits;

// Center the template

Center();

// Print statistics

// printf("Attempted Sucess %% Success Calculated Random %% Random Onbits\n");

// printf("%9d%9d%9d%12d%9d%9d%9d\n",

// attempts, nswitches+rswitches, ((rswitches+nswitches)*100)/attempts,

// nswitches, rswitches, (rswitches*100)/(nswitches+rswitches), onbits);

}

void btemplate::Center(void)

{

int x,y, xdim=GetXsize(), ydim=GetYsize(), xcent=0, ycent=0, newx, newy;

matrix buffer(ydim, xdim);

buffer.Clear();

for (y=0; y<ydim; ++y)

for (x=0; x<xdim; ++x)

if (GetEl(y,x)) {

ycent += y;

xcent += x;

buffer.SetEl(y,x,1);

}

ycent = ydim/2 - ycent/onbits;

xcent = xdim/2 - xcent/onbits;

Clear();

for (y=0; y<ydim; ++y)

for (x=0; x<xdim; ++x)

if (buffer.GetEl(y,x)) {

if ((newx=(x+xcent)%xdim)<0)

newx += xdim;

if ((newy=(y+ycent)%ydim)<0)

newy += ydim;

SetEl(newy, newx, 1);

}

}

// void btemplate::PrintLine(FILE *outfile)

// {

// int x, xdim = GetXsize();

// for (x=0; x<xdim; ++x)

// fprintf(outfile, "%d ", GetEl(y,x));

// }

/////////////////////////////////////////////////////////////////////////////

// group class

/////////////////////////////////////////////////////////////////////////////

group::group(int y, int x, int n)

{

int i,j;

ntemps = n;

xdim = x;

ydim = y;

master = NULL;

templates = new (btemplate*)[ntemps];

for (i=0; i<ntemps; ++i) {
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templates[i] = new btemplate(ydim, xdim);

}

for (i=0; i<5; ++i)

for (j=0; j<2; ++j)

params[i][j] = 0.0;

}

group::~group(void)

{

int i;

for (i=0; i<ntemps; ++i)

if (templates[i])

delete templates[i];

delete templates;

}

void group::MakeTemps(int its, int onbits_i, double a, double b1, double b2)

{

int i;

onbits = onbits_i;

order = 2;

iterations = its;

params[0][0] = a;

params[1][0] = b1;

params[1][1] = b1;

params[2][0] = b2;

params[2][1] = b2;

for (i=0; i<ntemps; ++i) {

templates[i]->Generate(onbits, order, params, iterations);

// sprintf(filename, "template%d.pbm", i);

// templates[i]->MakePBM(filename);

}

}

void group::MakePBM(char filename[], char comment[])

{

int i, j, x, y, column=0, row=0, border=1, thisrow;

int xsize = 4*(xdim+border)+border, ysize = ((ntemps-1)/4+1)*(ydim+border)+border;

matrix data(ysize, xsize);

// char file2[32];

for (y=0; y<border; ++y) {

column=0;

for (x=0; x<xsize; ++x)

data.SetEl(row, column++, 1);

++row;

}

for (i=0; i<ntemps; i+=4) {

// Do one row of 4 templates

for (y=0; y<ydim; ++y) {

// Do left size border for one row

column=0;

for (x=0; x<border; ++x)

data.SetEl(row, column++, 1);

// Do one line from the four templates

thisrow = (ntemps < (i+4)) ? ntemps : i+4;

for (j=i; j<thisrow; ++j) {

// do a row

for (x=0; x<xdim; ++x) {
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data.SetEl(row, column++, templates[j]->GetEl(y,x));

}

// make vertical border

for (x=0; x<border; ++x)

data.SetEl(row, column++, 1);

}

++row;

}

for (y=0; y<border; ++y) {

column=0;

for (x=0; x<xsize; ++x)

data.SetEl(row, column++, 1);

++row;

}

}

data.MakePBM(filename, 1, 1, comment);

// sprintf(file2, "%s.asc", filename);

// data.MakePBM(file2, 1, 0);

}

void group::MakeMaster(void)

{

int i, x, y;

if (master==NULL)

master = new btemplate(ydim, xdim);

master->Clear();

for (i=0; i<ntemps; ++i) {

for (y=0; y<ydim; ++y) {

for (x=0; x<xdim; ++x) {

if (templates[i]->GetEl(y,x))

master->SetEl(y,x,1);

}

}

}

}

int group::CountBits(void)

{

int x, y, count=0;

MakeMaster();

for (y=0; y<ydim; ++y)

for (x=0; x<xdim; ++x)

if (master->GetEl(y,x))

++count;

return count;

}

void group::PrintParams(void)

{

int i;

printf("\nParamters for the group:\n-------------------------\n");

printf("Template Size: %d x %d\n", ydim, xdim);

printf("Bits/Template: %d\n", onbits);

printf("Order: %d\n", order);

printf("Iterations: %d\n", iterations);

printf("Coefficients: a = %4.2f\n", params[0][0]);

for (i=1; i<order+1; ++i)

printf(" b(%d,1) = %5.2f \tb(%d,2) = %5.2f\n",
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i, params[i][0], i, params[i][1]);

}

C.2 Header Files

C.2.1 globals.h
#define MAXORDER 2

typedef int element_t;

C.2.2 matrix.h
#include <stdio.h>

#include "globals.h"

/////////////////////////////////////////////////////////////////////////////

// matrix class

/////////////////////////////////////////////////////////////////////////////

class matrix {

element_t *data;

int xdim, ydim;

public:

matrix(int, int);

matrix(char[]);

void Clear(void);

int GetXsize(void) {return xdim;};

int GetYsize(void) {return ydim;};

void SetEl(int y, int x, element_t) ;

element_t GetEl(int y, int x);

int InRange(int y, int x) {return (y>=0) && (y<ydim) && (x>=0) && (x<xdim);}

void Scale(double);

void Scale(int);

void Show(void);

void Show(FILE*);

void MakePBM(char*, int, int, char[]);

~matrix(void);

};

/////////////////////////////////////////////////////////////////////////////

// template class

/////////////////////////////////////////////////////////////////////////////

class btemplate : public matrix {

double b[5][2];

int order;

int dim;

int nchanges;

int onbits;

void Initialize(int, int, double[5][2]);

int Pick2(int []);

void Switch(int []);

double Ratio(int []);

double CalcT(int []);

void Center(void);
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public:

btemplate(int, int);

btemplate(char[]);

~btemplate(void);

void Generate(int, int, double [5][2], int);

void PrintLine(FILE*);

};

/////////////////////////////////////////////////////////////////////////////

// group class

/////////////////////////////////////////////////////////////////////////////

class group {

btemplate **templates;

int ntemps;

int xdim, ydim;

int onbits, order, iterations;

double params[5][2];

btemplate *master;

public:

group(int, int, int);

void MakeTemps(int, int, double, double, double);

void MakePBM(char[], char[]);

int CountBits(void);

void MakeMaster(void);

void PrintParams(void);

~group(void);

};

C.3 Sample Parameter File

C.3.1 params.txt
16 16 Y x X

10 iterations

-8.0 4.0 8.0 a

0.0 0.4 4.4 b(1,*)

0.0 1.0 0.0 b(2,*)

118



Bibliography

[1] Michael A. Rencher. A comparison of FPGA platforms through SAR/ATR

algorithm implementation. Master’s thesis, Brigham Young University, December

1996.

[2] M. J. Wirthlin and B. L. Hutchings. Improving functional density through run-

time constant propagation. InACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pages 86--92, Monterey, CA, February 1997.

[3] J. Villasenor, B. Schoner, K. Chia, and C. Zapata. Configurable computing

solutions for automatic target recognition. In J. Arnold and K. L. Pocek, editors,

Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,

pages 70--79, Napa, CA, April 1996.

[4] Mike James.Pattern Recognition. BSP Professional Books, 1987.

[5] Altera Corporation.Data Book, 1996.

[6] David A. Patterson and John L. Hennessy.Computer Organization and Design,

chapter 4, pages 219--221. Morgan Kaufmann Publishers, San Mateo, California,

1994.

[7] R. J. Petersen and B. L. Hutchings. An assessment of the suitability of FPGA-based

systems for use in digital signal processing. In W. Moore and W. Luk, editors,

Field-Programmable Logic and Applications, pages 293--302, Oxford, England,

August 1995. Springer.

[8] Anil K. Jain. Fundamentals of Digital Image Processing, chapter 2, 6, pages 33,

210. Prentice Hall, Englewood Cliffs, NJ, 1989.

[9] George R. Cross and Anil K. Jain. Markov random field texture models.IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(1):149--162,

January 1983.

119



BIBLIOGRAPHY

[10] J. M. Arnold, D. A. Buell, and E. G. Davis. Splash 2. InProceedings of the

4th Annual ACM Symposium on Parallel Algorithms and Architectures, pages

316--324, June 1992.

[11] Michael Rencher and Brad L. Hutchings. Automated target recognition on

SPLASH-II. InField-Programmable Custom Computing Machines, April 1997.

120


	Abstract
	Table of Contents
	1. Introduction
	2. Automatic Target Recognition
	3. Altera 10K FPGA
	4. Single Chunk Processor
	5. Multi-Chunk Processor
	6. Template Synthesis and Analysis
	7. Results and Performance
	8. System Design and Scaling Issues
	9. Summary and Conclusions
	A. Template Synthesis Results
	B. VHDL Source Code
	C. C++ Source Code
	Bibliography
	Abstract
	Table of Contents
	1. Introduction
	2. Automatic Target Recognition
	3. Altera 10K FPGA
	4. Single Chunk Processor
	5. Multi-Chunk Processor
	6. Template Synthesis and Analysis
	7. Results and Performance
	8. System Design and Scaling Issues
	9. Summary and Conclusions
	A. Template Synthesis Results
	B. VHDL Source Code
	C. C++ Source Code
	Bibliography

